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Abstract
Waste management is still an expanding field which needs to be constantly en-
hanced so that waste transportation and treatment is as effective as possible. An
important part of this process is a waste collection at the municipal level. Decision-
making about daily routing for all vehicles from a heterogenous fleet substantially
influences the expenses of technical services. The need of route scheduling comes
also from the newly separated fractions. Transportation features include the capac-
ity of vehicles, number and type of containers on the route, traffic light delays and
many others. The mathematical model that properly describes the real practice
of servicing containers has not been published yet. Moreover, routing problems
are generally not solvable by exact methods, so the appropriate heuristic algorithm
has been developed. A case study with obtained results is discussed. This solution
serves not only to improve the current operational situation, but also to create
new route schedules for increasing number of collected commodities.
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1 Introduction

Effective waste management contributes to economic and environmental sustainability. As a result of increasing
operational requirements and changing systems, the development of new methods in various areas is necessary.
For some waste producers (municipalities), the collection plan is simple because of the small scale of the problem.
Using elementary knowledge and calculations, a weekly collection plan can be created for the vehicle and adapted
to the current season and needs throughout the year. However, this statement can only be made for small areas
where dozens of containers of a particular type of waste occur. For larger territories, it is advisable to move to
more sophisticated methods, most often based on mathematical programming and computational algorithms.
An extensive up-to-date research in the field of operational research was addressed in [1], where opportunities
and challenges for further development were identified. The focus of the article, in addition to the number of
publications in each sector, was more general in nature, where decision-making and planning were divided into
strategic, tactical and operational, also with regards to data access (deterministic, stochastic or robust).

The complex point of view for the waste management was presented in [2]. In [3] was dealt with mobile waste
collection, while places to stop the vehicle were analysed. Collecting mobile sites have been selected here based
on the demand of citizens for specific time windows. Four different heuristic algorithms - Tabu Search, Greedy
Algorithm, Simulated Annealing (SA), Bee Colony Optimization - were tested to solve the problem. According
to testing on 3 different real instances with installation and collection infrastructure (Tokyo, Philadelphia,
Warsaw), the SA algorithm proved to be the most suitable for the given problem. The proposed solution to the
task was to reduce the costs and emissions generated by the waste transfer. It may be useful sites for identifying
warehouse, depots or waste treatment plant for the area. The facility location problem represents a challenging
task, especially, when randomness is involved, the genetic algorithm showed its strength in combination with
the Benders decomposition [4].

Existing systems also have drawbacks due to poor cooperation between different areas. In the case of the
collection and subsequent logistic chain of packaging waste, it may be the identification of suitable locations
for the warehouses, depots or waste treatment plants for the area. The paper [5] analysed the impact of the
target site for waste disposal at collection costs. Several smaller areas have been integrated in the calculation to
identify the potential for change. Individual collection containers were aggregated into larger areas to simplify
the collection section to allow for a more macroscopic view, while the capacities of both transfer stations and
terminal equipments were also taken into account. This was followed by an analysis of collection planning for
recyclable waste from an economic and environmental point of view [6].

Different systems of curbside collection were analysed in [7]. Multi compartment vehicles might be desirable
for some areas, however, transport requirements depends on other factors such as vehicle size, compression
factors, and packing. Plastic waste collection was modelled in [8] through vehicle routing problem in terms of
sustainability. Scenarios of different system were compared from cost point of view for the real world case.
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Waste operations may also depend on their type and properties, e.g., the collection of kitchen waste was
planned using a heuristic algorithm in [9]. A tailor-made procedure for this type of waste has been presented
because of its properties such as high mass versus volume or large variation in demand between collection points
(restaurants, bars, supermarkets, etc.). The test calculations of this algorithm are shown in the historic center
of Genoa and compared with the currently used plan with partial savings.

Savings can also be ensured by a robust waste collection view. This was introduced in [10], where Periodic
Capacitated Arc Routing Problem (PCARP) was formulated. The solution was found using the Simulated
Annealing algorithm, with the demand for waste collection being considered randomly. The vehicle routing
problem was solved using multi-chaotic variant of differential evolution in [11] and for capacited version in [12].
The multi-period fleet size and mix vehicle routing problem with stochastic demands was presented to make
strategic fleet sizing decisions [13].

The models deal with a specific problems such as periodicity, different fleet, different capacities. However,
there is no combination of Multi-Processor Multi-Trip PCARP with Heterogeneous Fleet in the literature that
describes the real problem for solving tasks in the context of collection companies in the Czech Republic.
Another novelty is a way of describing a task and simplifying it in the context of quality preprocessing, which
greatly simplifies the model, different fractions, type of edges, etc.

2 Problem Formulation

Assuming a heterogeneous fleet (each vehicle has a different capacity) with vehicles that stand at depot. A time
horizon defines days in which a vehicle can be operated (working days) and also the time of working shift is
limited. Vehicles can operate within the streets during the working hours, while repeated return to processing
facilities is allowed. The routing is performed on the oriented graph that describes the urban infrastructure
transport network in which we have both bidirectional edges and unidirectional edges. Edges can be divided
into four groups. Edges representing the exit from the depot, level crossing edges, edges with demand for
collection and processing edges, i.e. edges where waste is disposed of (disposal at the landfill, incineration at
the Waste-to-Energy plant or other). All considered edges do not have to be served.

A positive demand for waste collection is assigned to demand edges. If the edge is defined for both directions
(the arc and its inverse arc), only one has to be serviced. Each demand edge has a specified frequency with
which the waste must be collected. Based on this parameter, possible scenarios are constructed with regard to
a reasonable time gap between the collection days. The goal of the mathematical model is to find scenarios for
all edges and to assign vehicles in order to minimize total costs with respect to time and capacity constraints.

2.1 Notation

To formulate a mathematical model, sets, parameters, and variables must be defined. The notation and symbol
description is stated in the following.

Sets
I set of working days for collection, i.e., time horizon,
J vehicle fleet, set of available vehicles,
A set of all arcs,
N set of demand arcs and depot,
N 0 set of demand arcs,
M set of processing arcs,
M0 set of processing arcs and depot,
S set of possible servicing scenarios,
S(k) subset of scenarios S induced by demand arc k,

Parameters
cDk,l transport cost from arc k to arc l (k, l ∈ A),

cSk servicing cost of demand arc k (k ∈ N 0),

dl demand of arc l (l ∈ N ),

Qj vehicle capacity j (j ∈ J ),

tDk,l transport time from arc k to arc l (k, l ∈ A),
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tSk servicing time of arc k (k ∈ N 0),

tPk servicing time of processing arc k (k ∈M),

mI
k,l indicator matrix element, i.e., existence of inverse arc l with arc k (k, l ∈ N 0),

gi,s

{
1 colection is performed on day i in scenario s (i ∈ I, s ∈ S)
0 otherwise,

M big constant, i.e., number used as limit on constraints (activation and deactivation),
T daily working hours (available time),

Variables
Li,j,k maximal load of vehicle j on day i after servicing of arc k,

(i ∈ I, j ∈ J , k ∈ A),

xi,j,k,l

 1 if arc l is served after arc k by vehicle j on day i
(i ∈ I, j ∈ J , k, l ∈ A)

0 otherwise,

δi,j,k

 1 if demand arc k is served by vehicle j on day i
(i ∈ I, j ∈ J , k ∈ N 0)

0 otherwise,

yk,s

 1 if demand arc k uses scenario s
(k ∈ N 0, s ∈ S(k))

0 otherwise.

2.2 Model Formulation

Using the notation from 2.1, a mathematical model that matches the given problem can be formulated with
objective function considering cost as in equation (1). This model will find a scenario for each demand edge
and edge sequence to be served for each vehicle for all days considered so that the total cost is minimal.

min
∑
i∈I

∑
j∈J

∑
k∈A

∑
l∈A

cDk,lxi,j,k,l +
∑
i∈I

∑
j∈J

∑
k∈N 0

cSk δi,j,k (1)

s.t.
∑
k∈A

xi,j,k,h −
∑
l∈A

xi,j,h,l = 0, ∀i ∈ I, ∀j ∈ J , ∀h ∈ A, (2)

Li,j,k + dl − Li,j,l ≤ (1− xi,j,k,l)M, ∀i ∈ I, ∀j ∈ J , ∀k ∈ A, (3)

∀l ∈ N ,
Li,j,k ≤ Qj , ∀i ∈ I, ∀j ∈ J , ∀k ∈ N 0, (4)

Li,j,k = 0, ∀i ∈ I, ∀j ∈ J , ∀k ∈M0, (5)∑
l∈A

xi,j,0,l ≤ 1, ∀i ∈ I, ∀j ∈ J , (6)∑
k∈A

∑
l∈A

xijkl ≤M
∑
l∈A

xi,j,0,l, ∀i ∈ I, ∀j ∈ J , (7)∑
k∈A

∑
l∈A

tDk,lxi,j,k,l +
∑
k∈N 0

tSk δi,j,k +
∑
k∈A

∑
l∈M

tPl xi,j,k,l ≤ T, ∀i ∈ I, ∀j ∈ J , (8)

δi,j,l ≤
∑
k∈A

xi,j,k,l, ∀i ∈ I, ∀j ∈ J , ∀l ∈ N 0, (9)∑
k∈A

xi,j,k,l ≤ δi,j,lM, ∀i ∈ I, ∀j ∈ J , ∀l ∈ N 0, (10)

mI
k,l(yk,s − yl,s) = 0, ∀k, l ∈ N 0 : l > k,∀s ∈ S(k), (11)∑

s∈S(k)

yk,s = 1, ∀k ∈ N 0, (12)

∑
s∈S(k)

gi,syk,s −
∑
j∈J

(δi,j,k +
∑
l∈N 0

mI
k,lδi,j,l) = 0, ∀k ∈ N 0, ∀i ∈ I, (13)
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Li,j,k ≥ 0, ∀i ∈ I,∀j ∈ J , ∀k ∈ A, (14)

xi,j,k,l ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J , ∀k, l ∈ A, (15)

δi,j,k ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J , ∀k ∈ N 0, (16)

yk,s ∈ {0, 1}, ∀k ∈ N 0, ∀s ∈ S(k). (17)

The objective function (1) minimizes the cost for transportation through the streets (both servicing and
transferring), which are generally assumed different for mutually inverse arcs. This means that in terms of
costs, it is distinguished between the direction in which the street is passed. This can be caused, for example,
by a steep rise in the street. The equations (2) ensure continuity between successive arcs i.e. if the vehicle
enters the arc, it must also leave it. Constraints (3) prevent the creation of forbidden subtours and, at the same
time, recalculate the current vehicle load after visiting the given arc. In the next equations (4), the vehicle load
is limited by its capacity. Constraints (5) indicate that the vehicle load in processing plants and in depot is
zero. The equations (6) ensure that every vehicle can start the trip from depot at most once per day of the
time horizon. However, the number of collection routes is not limited - the waste can transported to processing
facilities multiple times (when all other constraints are met). If the vehicle services any arc, then it has to
leave the depot (7). Operating time of the vehicle is restricted in equations (8), while counting transportation
time, servicing time and a waste unloading time at the processing plant. Constraints (9) and (10) describe
the relationship between δi,j,k and xi,j,k,l. One binary variable indicates the other and vice versa, while for
xi,j,k,l the value is aggregated. Arcs that are inverse to each other must met equations (11), where the same
collection planning scenario is chosen for both. The choice of just one scenario for each demand arc is provided
by the equation (12). The equations (13) define the collection plan for all arcs. The selected scenario is applied
for demand arcs or their inversions, if they exist. The equations (14) indicate the non-negativity of the load.
Finally, (15), (16) and (17) introduce variables as binary.

3 Problem Solution

Mathematical models such as the one in the previous section are very difficult to solve [14]. Since there are
enormous number of binary variables for the real instance of the model, it is preferable to use heuristic approach.
The input data such as the matrix of distances and times has to be defined prior the calculation, i.e. the distance
of the end node of one arc to the initial node of the second arc. The shortest path among all arcs has to be
found. The Dijkstra algorithm is used in this step [15]. This procedure eliminates the crossing arcs. To get the
final route the predecessor matrix is used [14]. It defines the sequence of arcs across the shortest path. The
algorithm of route computation is described in the next subsection.

3.1 Algorithm

The proposed algorithm is based on a combination of a genetic algorithm with local search (LS). Programming
language C++ was used for its implementation. Specifically, the idea of maintaining two separate populations
was derived. Individuals were kept in a set of feasible and infeasible solutions. In addition, the so-called
biased fitness and diversification were used to select individuals who survive and go to the next generation.
Solution representation is explicit here to avoid complex and time-consuming decoding processes while running
the algorithm. The solution is then in the form of demand arc sequences for each route of each vehicle for all
days of the time horizon. Due to the crossover process, the processing facilities and the depot are not included
in this sequence, but given implicitly. The key component of this algorithm is the fitness function, which is
considered for solution Sol as follows:

fit(S) = E(S) + wQvQ(S) + wT vT (S), (18)

where vQ(S) and vT (S) are exceeded values of capacity and time, wQ and wT are the respective penalization
and E(S) defines the total cost.

The initialization of populations is performed through two algorithms that create reasonable routes, i.e.
Route-Merging and Path-Scanning, see [16]. Algorithm 1 describes the main scheme in the pseudocode.

The stopping criterion depends on the decision, it can be the total number of iterations, the running time of
the algorithm, the number of diversification operations performed, or a combination of the previous ones. The
crossover process is a phase where two P 1 and P 2 ancestors are selected to create a new individual C. This
selection is for both ancestors realized by binary tournament, i.e. two individuals are randomly selected from
the entire population (merge of feasible and infeasible populations) and choose the one with the better (less)
fitness.
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Algorithm 1 General scheme of the algorithm

1: Initialize population;
2: while stopping criteria is not met do
3: Select parents P 1 and P 2

4: Perform crossover of P 1 and P 2 to yield offspring C
5: Perform local search or repair of C with probabilities PLS , resp. PRep

6: if C is feasible then Insert C into feasible subpopulation
7: end if
8: if C is infeasible then Insert C into infeasible subpopulation
9: end if

10: if One of the subpopulation reached its maximum size then
11: Perform survivor selection with this subpopulation
12: end if
13: if best solution not improved for ItDIV iterations then
14: Diversify population
15: end if
16: end while
17: return best feasible solution

These two individuals then enter their own process of crossover, which begins by selecting the day from the
time horizon i. On this day, the vehicle is randomly picked from both and their routes are combined to get
a new individual C. At this stage, the assignment of the scenario to demand arcs must be performed in order
to meet all requirements of individual C.

After crossover, there is a phase of local search or repair of the solution. These adjustments try to make
solutions feasible and to improve their fitness. There are considered three possible movements from the initial
solution.

• Single Insertion (SI): moves the demand arc from the sequence to another position.

• Double Insertion (DI): moves two consecutive demand arcs from a sequence to another positions.

• Swap: the positions of two demand arcs are swapped.

All of these movements take place on the same day to keep the assigned scenario. Both possible directions
(inversion to arc) are tested. These movements are performed in random order while the solution is being
improved. The repair phase uses local search and, in addition, it adds penalty parameters wQ and wT to the
fitness function during iterations to emphasize the importance of getting a feasible solution.

Another part of the algorithm is the survivor selection, which is performed when a specified number of
individuals in one population is reached. The aim is to reduce the size of the population to a certain level,
and then resume with crossover. The main priority is to remove the clones, which are very similar individuals.
Having two similar individuals in the population has no benefit in terms of the genetic algorithm. Hamming
distance is used to find similarity, see [17]. Furthermore, the biased fitness is introduced to select individuals
who will be removed from the population. This selection is based on two characteristics of how good a given
solution is and how much it contributes to the diversity of the population. The last procedure to manage the
population is diversification. This process is performed when there is no improvement during a certain number
of iterations. From both populations, some individuals are removed by selecting survivors and replaced by
several new individuals using the initialization phase. This process will dramatically change the diversity of the
population and revive further searches.

The procedure of SI movement is described in detail, while the others are based on the similar idea. The
process begins by selecting the day from the time horizon where the SI will take the part. It goes through each
arc of the sequence of all vehicles to test the improvement. For tested arc TA (two consecutive arcs in the case
of DI), the fitness contribution is calculated according to the equation:

contribution = cDm,TA + cSTA + cDTA,n − cDm,n, (19)

where m and n are the previous and the next arcs in the sequence.
Then the neighbourhood N(TA) is searched and for the position n of each arc is calculated contribution of

arc TA. If the contribution at new position is lesser than the original one, then the solution is evaluated and
its feasibility checked (vehicle capacity and operating time). The pseudocode of the algorithm is displayed in
Algorithm 2.
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Algorithm 2 Local Search algorithm

1: Choose i ∈ Sol
2: for all j, k, l ∈ Sol[i] do
3: TA := Sol[i, j, k, l]
4: Calculate oldContribution
5: for all n ∈ N(TA) : n used in Sol[i] do
6: Calculate newContribution
7: if newContribution < oldContribution then
8: Copy old solution and perform move
9: Check feasibility

10: if feasible then
11: Replace by new sub-solution and return improved Solution
12: end if
13: end if
14: end for
15: end for

The second most challenging operation is crossover. Similarly to LS, the method utilises more accurate
neighbourhood and recalculation with contribution.

The inputs of the algorithm are two ancestors P 1 and P 2. The algorithm starts with random selection of
day i from time horizon, vehicle j1 ∈ P 1[i] and vehicle j2 ∈ P 2[i]. Then a new individual C is created by
copying the P 1 solution, and its vehicle j1 is replaced by a j2 vehicle while the capacity of individual C remains
the same. Arcs occurring multiple times at day i are deleted from the solution. The change of scenarios for all
arcs of P 1[i, j1] ∪ P 2[i, j2] follows according to the ancestor P 2 and removing the arcs that have changed. Now
a set R that contains all missing arcs is created.

For the next steps, the parameters conCost, conTvQ and conTvT are introduced. This means the contribu-
tion of the arc, the increase in capacity constraint violation and the increase in time constraint violation. There
are also parameters with the B flag, indicating the same properties for the best nB position to insert.

The algorithm then goes through all the non-assigned arcs e ∈ R, and for each of them selects from the
neighbourhood N(e) the arc position nB such that all the previously mentioned properties are the smallest.
This position is then used for insertion of arc e and the fitness function is recalculated. Algorithm 3 describes
the whole approach.

Algorithm 3 Crossover algorithm

1: Input: P 1, P 2

2: Randomly choose i ∈ I
3: Randomly choose j1 ∈ P 1[i] and j2 ∈ P 2[i]
4: C := P 1

5: Replace j1 of C by j2 and remove redundant tasks in period i of C
6: for all e ∈ P 1[i, j1] ∪ P 2[i, j2] do
7: replace scenarios for e of C with that in P 2

8: end for
9: Remove all tasks of C whose scenario was changed

10: Add all missed tasks to set R
11: for all e ∈ R do
12: BconCost,BconTvQ,BconTvT, nB := infinity
13: for all n ∈ N(e) : scenarios of e and n are equal do
14: Calculate conCost, conTvQ and conTvT
15: if conCost ≤ BconCost ∧ conTvQ ≤ BconTvQ ∧ conTvT ≤ BconTvT then
16: BconCost := conCost
17: BconTvQ := conTvQ
18: BconTvT := conTvT
19: nB := n
20: end if
21: end for
22: Insert e to position of nB and recalculate fitness of C
23: end for

Heuristics for Waste Collection Arc Routing Problem  
 

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX 

 
 

20



In this way, a new individual C is created. This individual is further sent to other procedures - LS or Repair,
depending on the feasibility of the given solution, see algorithm 1.

An adaptive parameter control has been introduced to improve the algorithm’s performance. This control
changes the parameters wQ and wT according to the ratio of frequencies of feasible and infeasible solutions. The
smaller the proportion is (generating more infeasible solutions), the greater are the penalties, and vice versa.

4 Testing

The presented algorithm was tested on the real network of Jihlava. The considered network contains 1,467
vertices and 3,529 edges. Other input parameters (costs of operation and capacities of vehicles, production
and demand for waste collection) were appropriately generated on the basis of demographic data and waste
management expert estimates. The best performance was obtained with probabilities 0.57 and 0.61 for PLS ,
resp. PRep. The need of randomness in evolutionary algorithms was discussed and numerically tested in [18].
The functionality and speed of the algorithm were studied on these data. The maximum population size was
set to 100 for both feasible and infeasible. The average calculation time per iteration was 0.69 second. Fitness
value development was highly dependent on the penalization rates (wQ and wT ). Initially, the algorithm quickly
improves the solution but with increasing iterations, the improvement interval increases. Once the solution has
not been improved for 30 iterations, a diversification procedure is introduced, which adds diversity to the
population and thus revives the entire crossover procedure.

The real case study was conducted for another city with 8,594 nodes. The calculation was performed for
specific district and route, where 264 arcs including inverse arcs were linked with 160 containers for paper
waste collection. The output was compared with the currently operated route and savings were identified. The
operated route distance is 71.4 km, while the result of the algorithm suggested route of 66.7 km length. This
reveals the potential of almost 7 % of savings, which corresponds with 1,400 EUR annually per one route.

5 Conclusion

An advanced tool for supporting planning in the field of waste logistics at a micro-regional level is needed to
effectively implement and meet goals. Tasks from waste collection mostly fall into operations research field.
However, such supply chain models are very complex and have hight time requirements for computing the
solution, which is mainly due to the combinatorial nature of the problem. Thus, it is necessary to proceed with
a heuristic approach. In this paper, the combination of genetic algorithm and local search was presented in
pseudocodes and the whole approach was described. These tasks are also demanding from the input data point
of view, therefore it is necessary to perform thorough preprocessing and statistical evaluation. Tasks related to
waste collection, fleet sizing, locating containers, and assessing the overall economic and environmental impact
must meet operational requirements to credibly model the reality.

The use of defined tasks is designed to support investment decision-making and project implementation,
primarily by minimizing costs, impact on the population or the environment. The heuristic algorithm was
used for real infrastructure and better performance was found for already operated routes. Potential savings of
almost 7 % were identified for studied problem. If such lesser cost would be realizable for all routes and vehicles
during the year, it would be saved up to tens of thousands of euros on costs.

New limitations and decision criteria can be implemented in the algorithm as well as in the model. In
heuristic algorithms, the fitness for emissions, costs and time can be defined and compared in the future. In
addition, the option for collection days might be added. One variant considers fixed collection days according
to the current plan. In the second variant, the aim is to create a schedule of collection days for all containers.
So far, allowed combinations of collection days have been generated based on frequency. Identical solutions
often appear in the current population of acceptable solutions, so the next challenge is to prevent the creation
of clones that already exist in the population. Thus, a clone test may be performed before a new solution is
included in the population.
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