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Abstract: The goal of this paper is to continue our investigation of the heuristic approaches of solving the
stochastic quadratic assignment problem (StoQAP) and provide additional insight into the behavior of different
formulations that arise through the stochastic nature of the problem. The deterministic Quadratic Assignment
Problem (QAP) belongs to a class of well-known hard combinatorial optimization problems. Working with several
real-world applications we have found that their QAP parameters can (and should) be considered as stochastic
ones. Thus, we review the StoQAP as a stochastic program and discuss its suitable deterministic reformulations.
The two formulations we are going to investigate include two of the most used risk measures - Value at Risk
(VaR) and Conditional Value at Risk (CVaR). The focus is on VaR and CVaR formulations and results of test
computations for various instances of StoQAP solved by a genetic algorithm, which are presented and discussed.
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1 Introduction

The main aim of the paper is to deal with the Stochastic Quadratic Assignment Problem (StoQAP) as the
(stochastic) generalization of the Quadratic Assignment Problem (QAP) by the of stochastic programming
techniques. A short review of the well-known quadratic assignment problem with appropriate references is
provided in Section 2 for completeness as it follows and quotes ideas from our previous papers from 2014
[16] and 2016 [26] dealing with this topic. Various original motivating applications from the Brno University
of Technology research areas are mentioned as they serve as a motivation for the urge to consider some of
parameters in the QAP to be random. The next section is devoted to the short review of selected basic concepts
of stochastic programming. These concepts are applied to StoQAP in Section 4, and specifically to two original
reformulations containing risk measures - Value at Risk (VaR) and Conditional Value at Risk (CVaR) that are
introduced and solved by a metaheurestic implemented in MATLAB.

2 Quadratic assignment problem

The QAP was first formulated by T. C. Koopmans and M. Beckman in 1957, see [8]. Formally the problem
is stated in the following way. Let us have a set of n facilities and a set of n locations. For each pair of
locations, a distance is specified and for each pair of facilities a weight or a flow is specified. The task is to
assign all facilities to different locations with the goal of minimizing the sum of the distances multiplied by the
corresponding flows. The development of the QAP related approaches can be found, e.g., in [6], [21] and [16]
for further references.

To build a QAP mathematical program, we denote N = {1, 2, . . . , n} and n × n matrix X having variable
components satisfying the following assignment constraints that form the feasible set

C =


n∑
i=1

xij = 1,
n∑
j=1

xij = 1, xij ∈ {0, 1}, i, j = 1, 2, . . . , n

 .
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 If the above conditions are met, then the QAP can be formulated as a quadratic binary program

min
xij


n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

dijfklxikxjl | X ∈ C

 , (1)

where dij ,∀i, j ∈ N are distances and fkl,∀k, l ∈ N are flows. The QAP (1) is proven to be an NP-complete
problem by [30]. During our applied research collaboration, we have found inspiring engineering applications
of QAP similar formulations at the Brno University of Technology (BUT). Among them, we can enlist a
design of fiber concrete pieces [36] and placement of cooling equipment in the continuous casting process [34].
Both problems lead to a specific mixed integer nonlinear programming (MINLP) formulation, so the QAP
experience can be useful. In addition, the next problem involves even random parameters. Together with
process engineering department we also work on energy production related problems. Waste is often discussed
as one of modern resources of energy. Its production places and produced amounts can randomly vary, so the
distances and flows can be modeled as random, see [22]. Hence, we need to model QAPs where at least one of
the aforementioned distance and flow matrices will be considered random.

3 Stochastic programming framework

We review a mathematical program (MP) as minx{f(x) | x ∈ C}, where C ⊆ IRn is a feasible set, n ∈ IN,
f : C −→ IR is an objective function, and x ∈ C is a decision (vector) variable. MPs often involve important
constant (deterministic) parameters. So, we can emphasize this fact by writing parameters explicitly in MP and
we introduce a parametric MP (PMP) as minx{f(x,a) | x ∈ C} where a ∈ IRK is a constant parameter, K ∈ IN.
Notice please that the introduced programs are constrained by deterministic constraints in the paper (cf. C
and C). We specify an underlying (stochastic) program (UP) as minx{f(x, ξ) | x ∈ C}, where ξ : Ω −→ IRK

is a random vector, for (Ω,F , P ) given probability space. So, UP is obtained from PMP by replacing a with
ξ. As ξ is an F-measurable mapping, it induces a probability distribution on IRK . We denote a probability
space as (IRK ,B,P) or (Ξ,B,P), where Ξ is a support of P. B is a σ-field of Borel sets on IRK or projections
of those sets on Ξ. Derived probabilities are computed by the rule ∀B ∈ B : P(B) = P ({ω | ξ(ω) ∈ B}).
∀ωs ∈ Ω : ξ(ωs) ∈ IRK is a realization (observation) of ξ. In short, we write ξs. Finally, we denote the
presence of random parameters in the model in the following way: We write (ξ) after letters denoting random
parameters. So, the UP is defined in a correct syntactical way, however its semantics remains unclear. Thus,
the first question that should be answered is when the decision will be made — before the random parameters
ξ are observed or after the observations ξs are known.

According to Madansky [7] when the decision x is made after observing the randomness ξ, this case is
called the wait-and-see (WS) approach. However, many decision makers must often make decisions before the
observations of ξ are known as in our case. So, they are using the so-called here-and-now (HN) approach. The
decision x must be the same for any future realization of ξ. Stochastic programming deals primarily with HN
decisions because the typical decision situation is described by the lack of observations. Let the UP be given.
For further computational comparisons we review its HN expected value (EV) deterministic reformulation as
minx{f(x, Eξ) | x ∈ C}, where Eξ is an expected value of ξ. We further specify a HN expected objective
(EO) deterministic reformulation as minx{E[f(x, ξ)] | x ∈ C}. Both EV and EO reformulations were applied
to StoQAP in our previous paper [16]. The choice of expected value of f(x, ξ) was motivated by the basic idea
to minimize “average costs”. The idea is realistic when we have the chance to apply such a policy many times
in the future. However, the average costs do not guarantee that there are no outlying costs. Therefore, we may
need to introduce a different criterion that is more risk averse.

4 StopQAP, VaRα and CVaRα

In this section we introduce the QAP with stochastic parameters (StoQAP) within the context of the QAP and
stochastic programming. There is still a considerable lack of research focused on StoQAP; a few exceptions
to this apparent disinterest are several authors who have analyzed statistical properties of the flow and/or
distance matrices, see, e. g. [28]. The first interesting insights into the HN StoQAP came from queueing related
applications, see [10] and [32]. In comparison with previous research papers that included randomness only in
the flow matrix, we deal with the StoQAP in a general way, as the uncertainty is included in both flow and
distance matrices. So, an underlying program following the previously introduced notation is the following

min
xij


n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

dij(ξ)fkl(ξ)xikxjl | X ∈ C

 . (2)
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 where dij(ξ) and fkl(ξ) are random parameters. Thus, we can specify deterministic reformulations. We will
write them in general, however, we will focus on a finite discrete probability distribution case with scenarios
s ∈ S. We will skip EV and EO reformulations here, as they are studied in paper [16] as well as the VO and
MM reformulations that were investigated in paper [26].

So, given a confidence level α ∈ (0, 1) a HN (here-and-now) VaRα (Value at Risk at confidence level α)
StoQAP reformulation is introduced:

min
xij

VaRα

 n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

dij(ξ)fkl(ξ)xikxjl

 | X ∈ C
 , (3)

where the VaRα is the α−quantile of the distribution of costs (given our initial decision x). By choosing α = 1
we would get the MM formulation studied in our previous paper.

Given a confidence level α ∈ (0, 1) a HN CVaRα (Conditional Value at Risk at confidence level α) StoQAP
reformulation is the following:

min
xij

CVaRα

 n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

dij(ξ)fkl(ξ)xikxjl

 | X ∈ C
 , (4)

where the CVaRα is defined as

CVaRα =
1

1− α

∫ 1

α

VaRγdγ, (5)

i.e. it is the expected value of the tail (from α-quantile onward) of the distribution of costs (sometimes referred
to as the Expected shortfall). For an in-depth information about the properties of the introduced risk measures,
see [23].

Looking back to (3) and (4), we specify that all random variables have a finite discrete probability distri-
butions with a finite number of scenarios and probabilities ps or we use a scenario-based (SB) approach for
the approximation of random elements of the flow and distance matrices with probabilities ps = 1/|S|. As we
further use HN SB VaR and HN SB CVaR StoQAP, we utilize notation dsij = dij(ξ

s) and fskl = fkl(ξ
s) where

s denotes a scenario.

5 Computations and results

There are numerous possibilities of approaching the problems formulated in the previous sections. One of these
approaches would be the traditional/optimization one, i.e. the model having 2n binary variables xij and 2n
linear constraints and the way to solve this model would be the standard optimization technique for MINLPs
- branch and bound, and cutting plane methods described in the rich integer programming literature. The
drawback of this approach is that computational time (time to reach certified global optimum) explodes with
increasing n as shown in our previous paper [16].

The approach used in our computations is a different one. The set of feasible solutions to the above mentioned
problems is the set of n-by-n permutation matrices and as such can be described by a permutation vector p
of length n. This formulation is not exactly useful for traditional optimization techniques; however, it is very
convenient one for the use of specialized genetic algorithms. There are custom tailored mutation and crossover
procedures that deal with permutation vectors (i.e. the result of these procedures is again a permutation
vector), that are often used in the travelling salesman problem, and can be found, e.g., in [17]. The use of
genetic algorithms cannot guarantee, that the solution found at the end of the procedure is truly the global
optimum, nevertheless, its ability to find a “very good” solution in a fraction of time compared to the traditional
approach makes it the “weapon of choice” for our computations.

The success of this approach hinges upon our ability to evaluate the fitness/objective function repeatedly for
quite a large number of iterations. In this regard an efficient procedure for computing the quadruple (quintuple)
sum is essential. In some software (MATLAB in our experience) an efficient way of computing the sum is in
rewriting it into a matrix multiplication form that is detailed in our previous paper [26]. The computation
of VaRα in (3) is obtained by ordering the cost vector and finding the α-quantile. Similarly, CVaRα in (4) is
computed as the average of the values that are greater or equal to the VaRα.

We investigated 3 cases with different correlation structure between D and F. In the first case dij(ξ) ∼
U(1, 9) and fij(ξ) ∼ U(1, 9) are independent, with correlation ρ = 0. In the second case fij(ξ) ∼ U(1, 9) and

dij(ξ) = fij(ξ) + εi,j , where εi,j ∼ U(−2, 2); the resulting correlation ρ = σ(F )
σ(D) =

√
4
5 . The last case is again

fij(ξ) ∼ U(1, 9) and dij(ξ) = 10− fij(ξ) + εi,j ; the resulting correlation ρ = −
√

4
5 . Furthermore, we review the
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 HN SB EO (expected objective) reformulation to compare the more risk averse objectives of VaRα and CaRα

to this quite commonly used one:

min
xij

{
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

|S|∑
s=1

ps
(
dsijf

s
kl

)
xikxjl | X ∈ C}. (6)

The stopping criterion for the genetic algorithm was 150 stall generations (identical for all problem sizes). The
computations were carried out on an ordinary machine (3.2 GHz i5-4460 CPU, 16 GB RAM). Then, the following
results have been obtained for varying number of facilities/locations n, fixed number of scenarios |S| = 100 and
confidence level α = 0.9, see Table 1 and Table 2.

Table 1: Results for ρ = 0 and ρ =
√

4
5 .

ρ = 0 ρ =
√

4
5

n objective EO VaR CVaR time [s] objective EO VaR CVaR time [s]

10
EO 2484 2692 2768 73 EO 2469 2742 2857 77

VaR 2497 2651 2772 84 VaR 2489 2699 2871 94
CVaR 2491 2680 2738 76 CVaR 2490 2755 2821 76

20
EO 9948 10355 10524 167 EO 9934 10521 10772 205

VaR 9992 10273 10536 150 VaR 10003 10442 10813 156
CVaR 9977 10326 10437 186 CVaR 9999 10539 10682 160

30
EO 22402 22972 23210 315 EO 22349 23239 23496 328

VaR 22470 22873 23286 257 VaR 22490 23018 23620 237
CVaR 22453 22932 23083 377 CVaR 22470 23156 23348 380

40
EO 39837 40656 40908 715 EO 39802 40958 41285 921

VaR 39936 40488 40934 606 VaR 39983 40769 41496 611
CVaR 39935 40565 40676 767 CVaR 39949 40881 41044 889

50
EO 62271 63313 63751 1002 EO 62346 63988 64698 1113

VaR 62425 63142 63850 732 VaR 62544 63582 64684 911
CVaR 62405 63253 63448 1201 CVaR 62524 63836 64168 1156

Table 1 shows the results for the first two cases for specific sizes of problems identified by number of variables.
Computational times are presented as well to underline how the problem quickly grows. The minimized objective
is specified by rows. The validity of solution can be derived column related values, where the optimal solution
obtained by the choice of reformulation (see rows) is substituted in the objective function specified by the
reformulation (see columns). One interesting aspect of the results is the relative closeness of EO and CVaR
solutions (in terms of the corresponding objectives), or, on the other hand that minimizing VaR produces
solutions quite dissimilar to the other two (it has the worst EO and CVaR value in almost all cases).

Table 2: Results for ρ = −
√

4
5 .

n EO VaR CVaR time [s]

10 1957 2060 2091 68

20 7865 8065 8110 202

30 17698 18010 18119 530

40 31872 32234 32346 1690

50 50970 51488 51677 2670

In Table 2, the results for the negative correlation case show a different behavior - namely that the minimal
objective (be it EO, VaR or CVaR) was attained by the same solution. Furthermore the computational times
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 (in the table we report the average time for the three objectives) were much higher in comparison with the first
two cases.

6 Conclusion

In this paper we continue our investigation of the StoQAP problem, started in [16] and [26], by introducing
more risk averse formulations as the objective, namely CVaR and VaR, and comparing the solutions to these
formulation with a standard EO formulation. The focus is on scenario-based reformulation and the subsequent
mathematical program is solved by a genetic algorithm and the actual computations were implemented in
MATLAB. All computations have followed the idea of test set for StoQAP introduced in [16].

The next line of research will take the direction of improving the algorithm as in [13], [14], [24], and [33].
We expect to utilize the results in the aforementioned areas of applications.

Acknowledgement: This work was supported by FSI-S-17-4785 Engineering Applications of Artificial Intel-
ligence.
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