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Abstract: Metaheuristic algorithms are often applied to numerous optimization problems, involving large-scale
and mixed-integer instances, specifically. In this contribution we discuss some refinements from the extreme
value theory to the lately proposed modification of partition-based random search. The partition-based approach
performs iterative random sampling at given feasible subspaces in order to exclude the less favourable regions.
The quality of particular regions is evaluated according to the promising index of a region. From statistical
perspective, determining the promising index is equivalent to the endpoint estimation of a probability distribution
induced by the objective function at the sampling subspace. In the following paper, we give a short review of
the recent endpoint estimators derived on the basis of extreme value theory, and compare them by simulations.
We discuss also the difficulties in their application and suitability of the estimators for various optimization
instances.

Keywords: metaheuristic optimization, endpoind estimation, extreme value, random search, bootstrap, order
statistics.

1 Introduction

Metaheuristic algorithms have drawn great attention in the last decades, and nowadays they belong to the most
often applied optimization techniques. Among their huge advantages it should be mentioned their adaptability
to a wide range of problems and relative suitability in finding good enough (not necessary optimal) solutions.
Especially, the metaheuristic algorithms are successfully applied to large-scale optimization problems, possibly
involving mixed-integer restrictions. Here the standard techniques exhibit significant limitations. The recently
developed and discussed algorithms include, for example, the genetic algorithms [13], particle swarm and ant
colony optimization [3], variants of tabu search, and many others [16]. However, such advanced approaches
suffer from several shortcomings, primarily the need of quite complex tuning to a specific problem.

In this contribution, we deal with one important class of metaheuristic algorithms known as partition-based
random search (PRS). PRS is a probabilistic optimization technique in which the solution space is iteratively
divided into smaller segments, whereby any further effort is paid to the most promising regions. A typical
PRS algorithm involves the following steps: (i) partitioning of the solution space into smaller subregions; (ii)
random sampling within these subregions and determining the corresponding values of an objective function;
(iii) evaluation of a so-called promising index of each subregion; (iv) repetition of the foregoing steps with
restriction to subregion with the best promising index. The promising index is a suitable measure reflecting the
quality of a given subregion, particularly in terms of estimation of the optimal objective function value within
the relevant region bounds.

From here on, we concentrate to the maximization problems of the following form

yopt ∈ arg max
y∈Y

h(y), (1)

where Y ⊆ Rp is a non-empty bounded solution space, and the objective function h : Y → R is continuous and
bounded from above. Otherwise there are no other requirements on h or Y such as convexity etc. For simplicity,
we will considered through the paper, that the optimum of the problem (1) is unique.

Let y1, . . . ,yn be a sequence of independent and identically distributed (i.i.d.) random vectors drawn from
some probability distribution defined on Y. Typical choice for yis is that they are drawn from multivariate
uniform distribution. Denote X1, . . . , Xn the corresponding values of the objective function, i.e. Xi = h(yi) for
i = 1, . . . , n. Then X1, . . . , Xn can be also treated as i.i.d. random variables, say, drawn from a distribution
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 with cumulative distribution function (c.d.f.) F (x). Denote further X1,n, . . . , Xn,n the order statistics obtained
from X1, . . . , Xn such that X1,n ≤ · · · ≤ Xn,n.

With respect to the problem (1), the simplest and the most common choice is the evaluation of the promising
index as the maximum of the objective function given yis sampled within a region. Thus, the promising index
is determined as Xn,n. As noted in [10], from the statistical perspective is the promising index nothing but
an estimator of the endpoint x∗ := sup{x : F (x) < 1} of c.d.f. F . The endpoint is the largest value that can
a random variable achieve, and hence x∗ = h(yopt). Reliable estimation of x∗ plays a crucial role in the PRS
algorithm, specifically in order to identify properly the most promising subregion to be restricted to. Hence a
suitable estimator x̂∗ should be adapted.

The endpoint estimators are usually derived on the basis of the Extreme Value (EV) theory. In [10] the
authors proposed, although a minimization problem considered, the probability-weighted moment (PWM) es-
timator x̂∗PWM based on limiting approximation of the tail through the peaks-over-threshold (POT) method.
The PWM estimator will be in detail investigated in Section 2, but let us consider following instance discussed
in [10]. Let us split the space Y into two disjoint subregions Y1,Y2. A small numerical example in [10] shows
that the PWM estimator of x∗ performs better than the naive estimator Xn,n in terms of correct subregion
identification (subregion including yopt). Assume the function to be minimized in (1) is the negated Rastrigin’s
function H(y) := 100− y21 − y22 + 10 cos(2πy1) + 10 cos(2πy2), where y ∈ 〈−5, 5〉× 〈−5, 5〉. The global optimum
R(yopt) = 120 is attained at the point yopt = (0, 0). Moreover, all local maxima are located at points with
integer coordinates placed symmetrically around yopt. In Fig. 1 are plotted the empirical probabilities of iden-
tifying the correct subregion. These were obtained from 500 simulations, whereby we the promising index was
evaluated as by the sample maxima, so by the PWM estimator applied to the largest values exceeding the 90%
sample quantile. Hence, the procedure exactly follows the paper [10]. Two cases of partition were considered:
first one with Y1 = {y ∈ Y : y1 ≤ 0.2}, and the second one with Y1 = {y ∈ Y : y1 ≤ 0.8}. Note, because of the
positions of local maxima, the set Y1 contains the same peaks in both cases.
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Figure 1: Empirical probabilities of correct subregion identification.

It follows that the PWM endpoint estimation may be very unstable. In the next sections we show that the
PWM estimator is not the best choice. Several other estimators have been recently proposed in the literature.
We discuss the suitability for the purposes of PRS, and we assess their finite-sample properties by simulations.

2 Endpoint Estimators and Their Properties

Let us consider a continuous distribution with c.d.f. F (x) as above. EV theory is being introduced in terms
of the quantile tail functions U = (1/(1 − F ))←, where f← denotes the left-continuous inverse of f (see [1]
for details). The fundamental EV theorem says, that the sample maximum Xn,n, when properly normalised,
converges in distribution to the generalised extreme value (GEV) distribution, if and only if there exists a
positive function a such that for x > 0 it holds

lim
t→∞

U(tx)− U(t)

a(t)
=
xγ − 1

γ
(2)

with γ ∈ R. The GEV distribution is a three-parametric family of distributions with shape parameter γ ∈ R,
scale parameter σ > 0, and location parameter µ ∈ R. To the condition (2) is referred as to the first-order
condition. Of our interest is so-called Weibull class of GEV for γ < 0, since in this case the (right) endpoint
U(∞) := x∗ is finite. Hence, from here on we limit ourselves only to this instance.

All the endpoint estimators discussed below are based on intermediate order statistics Xn−k,n where k =
k(n) → ∞ as n → ∞, and n/k → 0. This is directly related to POT method applied in [10], whereby
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 Xn−k,n plays a role of a threshold (for POT see e.g. [11]). From relation (2) arise two main types of semi-
parametric endpoint estimators. Firstly, for large enough t = n

k and x → ∞, from (2) it can be derived
U(∞) ≈ U(n/k) − a(n/k)/γ. The quantity U(n/k) is usually estimated by the order statistics Xn−k,n. The
value a(n/k) is asymptotically equivalent to the scale parameter σ. Hence, from here rises the endpoint estimator
of the following form [1]

x̂∗(k) = Xn−k,n −
σ̂(k)

γ̂(k)
, (3)

where γ̂(k) and σ̂(k) denote any suitable, k-dependent estimators of γ and σ, respectively.
Another type of the estimators was be derived by Fraga Alves and Neves [6]. This is due to expansion of U

in (2) in terms of regularly varying functions (see [8] for details). Hereby one obtains

x̂∗FAN(k) = Xn,n +
k−1∑
i=0

aik (Xn−k,n −Xn−k−i,n), (4)

with aik := log((k + i + 1)/(k + i))/ log 2. Note that the FAN estimator is defined for k ≤ n+1
2 , and the naive

endpoint estimator Xn,n is just a special case of x̂∗FAN taken k = 1.
We consider two estimators of the type (3), the PWM estimator x̂∗PWM and the moment estimator x̂∗MOM.

For the first one are the shape and scale parameters estimated by the following

γ̂PWM =
M0 − 4M1

M0 − 2M1
, σ̂PWM =

2M0M1

M0 − 2M1
,

where Mi := 1
k

∑k
j=1

(
1− j

k

)i
(Xn−k+j −Xn−k,n) is the sample PWM of order (1, r, 0) (see [11]). In case of

the moment estimator we use

γ̂− = 1− 1

2

(
1− (M1)2

M2

)−1
, σ̂MOM = Xn−k,nM1(1− γ̂−),

where Mi := 1
k

∑k−1
j=0 (logXn−j,n − logXn−k,n)

i
. For PWM there are no restrictions in case of γ < 0, however

the moment estimator γ̂− requires x∗ > 0. Nevertheless, this additional condition should not provide any serious
limitations in applications.

Typical situation in EV analysis is as follows: for small k the estimates are loaded with small bias, but larger
variance as only limited number of observations are used for the estimation. Conversely, for k large the variance
decreases and the bias component grows. In order to embed the endpoint estimator into the PRS procedure, the
estimation precision is of high importance. Thus, the issue to solve is the identification of an optimal number
k0 of order statistics used in (3) or (4). This is commonly based on asymptotic properties of the estimators.

In order to achieve asymptotic distributions of the endpoint estimators, a second-order condition have to
be satisfied. Briefly, the second-order condition controls the speed of convergence of the limit in (2). Hereby,
it shows up that the convergence can be characterised by a regularly varying function A and a second-order
parameter ρ ≤ 0. The estimation of ρ or the second-order function is quite troublesome, and it is often discussed
in the literature [2, 7]. Mostly it requires higher-order conditions to be fulfilled; for further details on second-
order condition see e.g. [1]. Hence, in order to avoid the estimation difficulties, advanced techniques are usually
applied. This is discussed in Section 3 below.

Then, under some regularity requirements, both x̂∗PWM and x̂∗MOM follow asymptotically a normal distri-
bution with variance and bias depending on γ and both γ and ρ, respectively. Specifically, the bias of x̂∗PWM

and x̂∗MOM is managed solely by the second-order framework. On the other hand, the bias of FAN estimator
(4) is governed by both the second-order adjustment and the first-order function a in (2). This makes the
FAN estimator harder to manage. Moreover, the asymptotic distribution of x̂∗FAN is a mixture of normal and
extremal Weibull distribution (see [8], Theorem 2). This leads to different behaviour of the estimator for specific
values of γ in terms of both bias and variance. Nevertheless the estimator (4) has several significant advantages.
Primarily it does not depend on the estimation of γ, which usually leads to introduction of further uncertainty.
Another great property rises from the relation x̂∗FAN ≥ Xn,n, i.e. the estimator (4) is consistent with the data.
This is however guaranteed neither by x̂∗PWM, nor x̂∗MOM. Moreover, the FAN estimator exhibits relatively good
stability for wide range of k as discussed in section below.

In order to reduce the first-order bias of x̂∗FAN, a bias-corrected (BC) estimator was proposed [8] of the form

x̂∗BC := x̂∗FAN − â
(n
k

)
s(γ̂), (5)

where â(n/k) is an estimator of a(n/k), for example σ̂MOM or σ̂PWM can be used as above. The function s is

defined as s(γ) := 1
γ

(
2−γ−1
γ log 2 + 1

)
and can be obtained from the limit expansion of x̂∗FAN [6]. The estimator x̂∗BC

was, however, not closely investigated in [8] as the authors argue with only limited effect of the correction.
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 3 Simulation Study

In order to assess the behaviour of various endpoint estimators we perform a simulation study taking into
account three distributions with c.d.f. limit of sample maxima in the Weibull class (1.–3.), and three benchmark
functions (i.–iii.) of various art with unique global maxima. The particular models are listed below. The
GEV shape parameters of the latter type can be accessed only through simulation: an extensive, uniformly
distributed, random sample of yis was repeatedly drawn on a space Y, and the value of γ was estimated from
the corresponding objective function values. For this purpose was used either the maximum likelihood estimator
(suitable for γ > − 1

2 , see [1, 17]), or another moment estimator of γ (little different from γ̂MOM) [1], whereby
the optimal k0 was chosen via double bootstrap methodology (see e.g. [4, 11]). Hence, we consider the following
models:

1. Shifted reverse Burr (RB) distribution with c.d.f. F (x) = 1 − (1 + (µ− x)−τ )
−λ

for x ≤ µ = x∗, where
τ, λ > 0, and also µ > 0 to ensure x∗ > 0. The corresponding GEV shape parameter is γ = −1/(τλ).

2. Extremal Weibull distribution (GEV with γ < 0) with c.d.f. F (x) = exp
{
−
[
1 + γ

(
x−µ
σ

)]−1/γ}
for

x ≤ µ− σ/γ = x∗.

3. A case of Beta distribution with F (x) = 1− (1− x)−1/γ for 0 ≤ x ≤ 1 = x∗.

i. Negative Rosenbrock’s function R(y) := 105 − 100(y21 − y2)2 − (1 − y1)2 on Y = 〈−5, 5〉2. The global
optimum R(yopt) = 105 is attained at yopt = (1, 1), γ ≈ −2.08.

ii. Negative Rastrigin’s function H(y) := 100− y21 − y22 + 10 cos(2πy1) + 10 cos(2πy2) on Y = 〈−5, 5〉2. Here
we have H(yopt) = 120 at yopt = (0, 0), γ ≈ −0.50.

iii. Gaussian-mixture function G(y) := e−A(x2+y2) + De−B((x−3)2+(y−3)2) + Ee−C(x2+(y−4)2) on Y =
〈−4, 6〉2 with (A,B,C,D,E) = (0.5, 5, 0.1, 0.9, 0.8). Global optimum is G(yopt) ≈ 1.1964 at yopt ≈
(2.9801, 3.0066), γ ≈ −0.28.

The good solutions of R(y) lay inside narrow, parabolic-shaped valley and outside this area the solutions
perform poorly. The function H(y) is a composition of periodical function fitted on a paraboloidal support, i.e.
there are many local optima with only slightly different values of the objective function. Finally, the function
G(y) is a three-peak surface with relative easily distinguishable local and global optima. Moving from these
points causes the solution value decrease rapidly to zero. The second best solution takes the value ≈ 1.1706,
hence it is well distinguishable from the global optimum. However, the global-optimum peak is relatively steep,
leading sometimes to misspecification by the sample maxima estimates.

In Fig. 2 are plotted the mean endpoint estimates with respect to the choice of k upper order statistics
obtained from the models 1.–3. above. The means have been observed from 1,000 independent realizations of
size n = 500 for various values of γ. Particularly, we considered the following settings of the models: RB with τ
variable, λ = 1, µ = 3; GEV with γ variable, σ = 1, µ = 0; Beta with γ variable. Note, that the naive estimator
Xn,n (noted as MAX) is plotted constant, since it coincides to x̂∗FAN(1). The true value of x∗ is indicated by
dashed line.

One can see, that the PWM estimator performs the worst in terms of bias. Hereby, when compared to [10],
the use of alternative estimators could lead to improvement of the PRS methodology. The moment estimator
x̂∗MOM exhibits exactly the bias-variance trade-off discussed above in Section 2. If k is chosen properly, there
is chance for zero bias, or better, small bias and concurrently relative small variance, too. The approach for
finding k0 minimizing the mean square error (MSE) proposed in [5] will be discussed below. Nevertheless, both
PWM and MOM are generally not data-consistent, i.e. one can obtain clearly unsuitable estimate x̂∗ with
Xn,n > x̂∗.

On this account, the naive estimator performs well. However, by its nature, it underestimates the endpoint.
The rate of underestimation depends mostly on the tail properties of the distribution and the sample size n.
The shape parameter, as indicated by its name, γ influences the length of the right tail of the distribution.
While for γ < 0 the tail is always finite, large negative values of γ indicate the tail is extremely short. On the
other hand, γ near zero means there is only a small probability of observation being drawn close enough to the
endpoint, such that Xn,n could be loaded with small bias. Follow this reasoning in Fig. 2 over the rows, where
the bias of Xn,n decreases with γ.

The FAN estimator x̂∗FAN overperforms Xn,n is the majority of cases, especially for γ close to zero. As
noted in [8], the dominant component of the bias comes from the first-order function a(n/k) which, in case γ is
close to zero (Fig. 2, first row), exhibits very slow convergence. Still, there is decent possibility to gain smaller
bias as that of Xn,n. As γ decreases, x̂∗FAN exhibits sharper trend, whereby the area for a suitable k selection
tightens rapidly. Here we mention the results from [1] and [8], where the authors discuss, that the convergence
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 of Xn,n for γ < − 1

2 is approximately equivalent to the moment related estimators (while x̂∗MOM still shows
better stability than x̂∗FAN for γ ≤ −0.7; see last two rows in Fig. 2). Hence, in this case one can benefit from
use of the naive estimator in terms of both good precision and simplicity. The authors of [8] discussed shortly
the relevance of a bias-corrected FAN estimator x̂∗BC. This estimator overtakes all negatives of regular FAN
estimator (i.e. slow convergence for γ ≈ 0, large bias for γ ≤ −0.7). However, in our simulations the estimator
x̂∗BC showed only negligible stability improvements for γ = −0.4. Here we agree with the comments in [8] that
the first-order bias-correction in x̂∗BC has very limited effect.
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Figure 2: Mean estimates of x∗ with respect to the choice of k observed from 1,000 realizations of size n = 500.
Distributional models: RB (left), GEV (middle), Beta (right). Value γ within rows -0.2, -0.4, -0.7, -1.5.

In Fig. 3 are visualized the mean estimates and MSE of particular endpoint estimators applied to the
benchmark functions. As it is well known, for the MSE holds the relation MSE(x̂∗) = var(x̂∗) + bias(x̂∗)2, i.e.
minimizing the MSE can be viewed as finding a compromise between variance and bias.

The results in Fig. 3 rather agree with the conclusions made earlier. The large negative value of γ for
Rosenbrock’s function causes overall estimators to perform badly as the bias grows rapidly with k. Hence, the
naive estimator remains the best choice, and this holds also in terms of MSE. In case of the Rastrigin’s function
both FAN and MOM estimators exhibit good stability for small and intermediate k. However, x̂∗MOM again
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 suffers from significant variability. This is also visible from the lower plot, where x̂∗MOM shows much larger MSE
although in bias it is comparable to FAN. The FAN estimator turns out to be the best choice if k is selected
properly. Similar situation was obtained also for the Gaussian-mixture function. Nevertheless, when compared
to the simulations made earlier (Fig. 2), the FAN estimate shows a little different behaviour. It converges faster
and has a tendency to fluctuate around the true endpoint value.

Rosenbrock’s function, γ ≈ −2.08
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Figure 3: Mean endpoint estimates (upper row) and corresponding MSE (lower row) obtained from 1,000
simulations of size n = 500 for the benchmark functions R(·) (left), H(·) (middle), G(·) (right).

Still the main issue to solve is finding an optimal number k0 of upper order statistics to be embedded into an
estimator. A great interest has been paid to this in the area of individual parameter estimation. This is mainly
due to the particular importance of the shape parameter γ with respect to the tail probabilities. In practical
situations is the optimal k0 being determined mostly by visual inspection of the parameter dependencies (see
e.g. [11] for so-called mean-residual-life plot in POT analysis), or by several rules of thumb (as in [10] where
they choose k such that Xn−k,n is equivalent to the upper 90% quantile). Lately, attention was paid to adaptive
methods for selection of k0, follow e.g. the papers [4, 12, 15] or [9]. An exhaustive summary of various approaches
is given in [14] including several obsolete ones.

pomoci DB nemusime odhadovat A
In this contribution we consider the double bootstrap methodology of estimating k0 from [5] developed for

the moment estimator x̂∗MOM and γ > − 1
2 . The optimal value k0 is chosen such that the MSE of x̂∗MOM is

minimal, i.e. k0 ∈ arg min E(x̂∗MOM − x∗)2, where E stands for expected value. Since the value x∗ is unknown,
it is replaced with an auxiliary estimator x̂∗aux of the form (3) with γ̂(k), σ̂(k) replaced by third-order moment
estimators

γ̂3 := 1− 2

3

(
1− M1M2

M3

)−1
, σ̂3 := Xn−k,nM1(1− γ̂3), (6)

with Mis defined before. This auxiliary endpoint estimator has asymptotic properties similar to x̂∗MOM. The
difficulty in assessing k0 is that the asymptotic MSE depends as on γ, so on the second-order characteristics,
i.e. the second-order parameter ρ and the function A. The troublesome estimation of A was shortly outlined in
Section 2. The double bootstrap method consists in combination of two different estimates of k0. This is done
in order to achieve an estimator that is independent on the function A and consists only γ and ρ.

In the double bootstrap methodology a random sample of size n1 < n is repeatedly, say B times, drawn
from the original series X1, . . . , Xn. Hence we get B new series X∗1,b, . . . , X

∗
n1,b

, b = 1, . . . , B. For each such

b-th sample, and k = 1, . . . , n1 − 1, is determined a sequence q∗n1,b
(k) := (x̂∗MOM(k)− x̂∗aux(k))

2
. On this

basis is obtained the bootstrap MSE estimator 1
B

∑B
b=1 q

∗
n1,b

(k), and minimized with respect to k. Denote the

corresponding value k∗0(n1). Afterwards, the procedure is repeated with n1 replaced by n2 := dn21/ne. This
yields an optimal value k∗0(n2). In [5] it was shown that the value k0 minimizing MSE of x̂∗MOM is asymptotically
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 equivalent to k̂0 determined in the following manner

k̂0(n) :=
[k∗0(n1)]

2

k∗0(n2)
· g(γ̂−, ρ̂n1

(k∗0))

ḡ(γ̂−, ρ̂n1
(k∗0))

, (7)

where ρ̂n1(k∗0) :=
log k∗0 (n1)

2 log(k∗0 (n1)/n1)
is an estimator of the second-order parameter, γ̂− is the same as in Section 2,

and the functions g(γ, ρ), ḡ(γ, ρ) can be found in [5].
In order to assess the performance of the double bootstrap estimation of k0 we draw 500 independent

simulations of size n = 500 from the considered benchmark functions. The corresponding values x̂∗MOM(k̂0) with

k̂0 from (7) are compared against the naive estimator. Concurrently, we determine also the estimates observed
by x̂∗FAN and x̂∗PWM. The first one is considered with k0 fixed near the optimum attained in our simulations.
Namely, for both the Rastrigin’s and Gaussian-mixture functions we set k0 = 50, for Rosenbrock’s function we
put k0 = 3 (just small deviation from Xn,n to see the difference). The PWM estimator is evaluated in order to
be able to assess the results to the paper [10], and thus we assume k0 = dn/10e such that Xn−k0,n is equivalent
to the 90% quantile of the data. This is the approach adopted in [10].

Boxplots of the particular estimates are visualized in Fig. 4. Note, as expected, the PWM estimator is
significantly biased which makes it unsuitable for any endpoint estimation. This is even enhanced by the
heuristic choice of k. On the other hand, the MOM estimator exhibits good performance. The median of MOM
is no worse with bias than the naive MAX estimator. Practically, from this perspective it is comparable with
the FAN estimator, which was however estimated under the optimal settings. But the MOM estimator suffers
from two significant deficits: (i) it is loaded with substantial variance (evident mostly for the Gaussian-mixture

function), and (ii) the double bootstrap method for determining k̂0 is computationally too demanding to be
embedded in PRS. It turns out that the only perspective estimator is x̂∗FAN. It has similar small variance as the
naive estimator, and can reduce the estimation bias. Nevertheless, there is missing an advisable scheme for the
choice of number of order statistics to be used.
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Figure 4: Boxplots of endpoint estimates obtained from 1,000 simulation of size n = 500 for the benchmark
functions R(·) (left), H(·) (middle), M(·) (right).

4 Conclusion

In this contribution we discussed possible improvements to partition-based random search algorithm. This
optimization method has several advantages, primarily it is very flexible with no extraordinary requirements
laid on the objective function. Quality of a subregion after partition is given by the promising index. In practical
situations, when maximizing an objective function, is such an index constructed simply as a maximum of the
objective function attained by a random sample drawn on the region. The authors of [10] proposed evaluation
of the promising index on the basis of extreme value estimation of the distribution endpoint. Arguments for
that are obvious as the sample maximum has only limited ability to capture the tail properties of a distribution.
Other extreme observations within the region are hereby omitted.

Presented simulation study showed that the originally proposed PWM endpoint estimator exhibits very bad
finite sample properties. This encompasses especially large bias. Better properties are achieved by the moment
estimator. Recently published study [5] provides double bootstrap approach for adaptive selection of tuning
parameter k, the number of upper order statistics, based on minimization of the mean square error of the x̂∗MOM.
This technique results in good quality estimation, however it can not handle the internal large uncertainty of
the moment estimator of γ. Hence, the endpoint estimates are loaded with large variability, too.

Much better results were obtained by the FAN estimator. This estimator is a generalization of the naive
estimator Xn,n. This means it has comparable small variance and it is data-consistent, which is not a feature
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 governed by neither MOM nor PWM. Moreover, compared to Xn,n, the FAN estimator can significantly reduce
the estimation bias if considered at some suitable level of k. A convenient techniques of proper value of k is
however missing, and represents the current challenge for further research.

As noted already in [1], it was proved through simulations, that all the advanced estimators exhibit slow
convergence to x∗ if the GEV shape parameter γ takes large negative values. In such cases, typically γ < − 1

2 ,
it is more appropriate to use the sample maxima. The rate of convergence to x∗ is similar to other estimators,
and Xn,n is the easiest possible to evaluate.

The statistical methods described above may be also applied within other metaheuristic frameworks, since
these lead mainly to solution good enough and not necessary optimal. The endpoint estimation may then serve
for quality assessment of such sub-optimal solutions.
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