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Abstract
This paper examines the implementation of simple combination mutation of differ-
ential evolution algorithm for solving stiff ordinary differential equations. We use
the weighted residual method with a series expansion to approximate the solutions
of stiff ordinary differential equations. We solve the problems from an ordinary stiff
differential equation for linear and nonlinear problems. Then, we also implement
our method for solving stiff systems of ordinary differential equations. We find
that our algorithm can approximate the exact solution of a stiff ordinary differen-
tial equation with the smallest error for each length of series that we have chosen.
Thus, this approximation method, by using the optimization method of simple
combination differential evolution, can be a good tool for solving stiff ordinary
differential equations.
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1 Introduction

Stiff differential equations are characterized as those
whose exact solution has a term of the form e−ct,
where c is a large positive constant [2, 15, 5]. There
are many papers that proposed solutions for the stiff
differential equation [12]. Atay [3] has used the Vari-
ational Iteration Method for solving Stiff Systems of
Ordinary Differential Equations. Then, approximates
of first-order Stiff solution based on block methods
were shown in Ukpebor [22] using polynomial expan-
sion and Adee [1] using Taylor series expansion with
both papers at every step of integration by the Runge-
Kutta method. Then, Raymond et. al [20] also used
a self-starting five-step eight-order block method with
two off-grid for solving stiff ordinary differential equa-
tions using interpolation and collocation procedures.
Ibrahim et. al [14] employed a class of hybrid block
backward differentiation formulas (HBBDFs) methods
that possessed stability constructed by reformulating
the block backward differentiation formulas (BBDFs)
for the numerical solution of stiff ordinary differential
equations (ODEs). El-Zahar et. al [9] proposed a new
generalized Taylor- like explicit method for stiff ordi-
nary differential equations. Aksah et. al [15] proposed
a single diagonally implicit block backward differen-
tiation formula (SDIBBDF) for solving stiff ordinary
differential equations. Nasaruddin et. al [17] proposed
a six-order fully implicit block backward differentia-
tion formula with two off-step points (BBDF(6)), for
the integration of first-order ODEs that exhibit stiff-

ness. Ibrahim et.al [13] constructed an implicit fixed
coefficient block backward differentiation formula de-
noted as A(α)-BBDF with equal intervals for solving
stiff ODEs. So far, we did not find an optimization
method for solving Stiff ODEs. Therefore, we propose
a new method for solving stiff ODEs using an optimiza-
tion method.

In this paper, we propose a new numerical method
for solving stiff ordinary differential equations, espe-
cially in initial value problems. Our method is differ-
ent from the numerical methods that have been stated
before. We use an optimization method for solving the
stiff ordinary differential equation. Then, we get solu-
tions for all intervals simultaneously. This is the differ-
ence between our method with the numerical method
as usual like using the Runge-Kutta and Euler method
whether the solutions are getting for each node, not
for all of interval and the result is not convergent nu-
merically. Therefore, we propose a new method for the
approximate solution of the stiff ordinary differential
equation.

In this paper, we use the optimization method like
in papers [4, 8, 10, 11, 18] for solving the stiff ordi-
nary differential equation. We use a series expansion
and weighted residual method for the approximation
method in solving the stiff ordinary differential equa-
tion. This method can be used in solving the stiff ordi-
nary differential equation and non-stiff ordinary differ-
ential equation. The series expansion and its derivative
are implemented into ODEs and its boundary condi-
tions. From here, we define a residual function with a
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unit weight function as in [4, 10, 11]. In our optimiza-
tion problem, this function will be minimized using the
Combinational Mutation Strategy of the Differential
Evolution algorithm. As a preliminary study, we focus
on solving linear odes both stiff and non-stiff.

This paper consists of five sections. The first one
is an introduction. The second one explains the ap-
proximation method for solving stiff ODE and meta-
heuristic algorithm that is called the Combinational
Mutation Strategy of Differential Evolution. The third
one shows the results of the approximation solutions
and compares them to the exact solutions. The fourth
one is a discussion of the results. The last part gives
the conclusion of this paper.

2 Approximation Method for Solving Stiff
Ordinary Differential Equations

In this section, we explain the method for changing
stiff ordinary differential equations into an optimiza-
tion problem. Afterward, we give an overview of the
optimization method that we used in this paper. How-
ever, before that, we describe the approximation func-
tion that we propose to approximate stiff ordinary dif-
ferential equations.

2.1 Weighted Residual Function

Given an ordinary differential equation,

Lu = f(x) (1)

with boundary conditions (BCs) in the domain Ω. In
this equation, L is the linear differential operator upon
u and f is the function value. The solution u(x) of Eq.
(1) approximately consists of

u(x) ≈ û(x) =
n∑

i=0

ciϕi(x) (2)

satisfying the BCs in the weighted residual function.
Afterward, we define ci as the unknown coefficients yet
to be determined for the trial functions ϕi(x) for i =
0, 1, 2, . . . , n, where ϕi(x) are linearly independent to
each other. The assumed solution is substituted in the
governing differential equation (1) resulting in an error
or residual. This residue is then minimized to vanish
in the domain Ω, resulting in a system of algebraic
equations in terms of unknown coefficients ci.

Further, we substitute û(x) to Lû(x) ̸= 0 that is
called an error. Then, we define the residual as the
measure of error as stated below

R(x) = Lû− f(x) (3)

An arbitrary weight function wi(x) is then multiplied
in Eq. (3) and integrated over Ω, that is considered
as weighted residual function (WRF), the result like in

Eq. (4) below:

WRF =

∫
Ω

wi(x)[Lû(x)− f(x)]dx

=

∫
Ω

wi(x)R(x)dx

(4)

for i = 0, 1, 2, . . . , n. Appropriating the value of ci on
trial û(x) can make WRF zero over the entire domain
Ω. It is proper calling that in Eq. (2), u(x) = û(x) as
n → ∞.

2.2 A Series of Trial Solution of ODE

Based on Taylor explanation, the higher exponent can
be approximated using sinus-cosines series with long
enough series to get the highest accuracy such that
using a Fourier series approximation like in reference
[4, 10, 11]. But if this Fourier series approximation
is used in solving stiff ordinary differential equations,
then this Fourier series approximation is not effective
to approximate the solution. The reason is that we
need a longer term of Fourier series approximation to
approximate the exponent with a higher power. There-
fore, we propose an approximate function like the series
below:

ytrial(x) = a0e
cx +

nat∑
i=1

[aj cos(jπx) + bj sin(jπx)] (5)

Coefficients c, a0, a1, b1, a2, b2, . . . , anat, bnat are
searched using the optimization method. Periodic
factors in sinus and cosine function are eliminated to
make generalize for the optimization result in all of
the interval x. In this paper, a trial solution is not
only used in stiff ordinary differential equations, but
also for non-stiff ordinary differential equations.

2.3 Weighted Residual Method as Optimization
Problem

An ordinary differential equation (ODE) is an equation
involving an unknown function and its derivatives. An
ODE of order n in the explicit form is

f(x; y, y′, . . . , y(n)) = 0 (6)

where y is a function of x, y′ = du/dx is the first deriva-
tive with respect to x, and y(n) = (d(n)y)/(d(n)x) is the
nth derivative with respect to x. Not all of differential
equations can be solved analytically. A residual func-
tion is defined by substituting the trial solution (5) and
its derivatives to the left-hand side of ODE in Eq. (6):

R(x) = f(x; ytrial, y
′
trial, . . . , y

(n)
trial) (7)

According to [5, 11, 12], the objective function to evalu-
ate ODE’s cost function is a weighted residual function
as follows:

WRF =

∫
Ω

|w(x)| · |R(x)|dx (8)
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where w(x) and R(x) are denoting weight and resid-
ual functions respectively. In this paper, for simplicity
purposes, the weight function can be assumed to be
unit value, w(x) = 1 as in [4, 10, 11].

The approximation solution must also meet the ini-
tial and boundary condition of ODE problems. They
are given as follows:

y(x0) = y0 ⇒ g1(x0) = |ytrial(x0)− y0|
y′(x0) = y′0 ⇒ g2(x0) = |y′trial(x0)− y′0|

...

y(n)(x0) = y
(n)
0 ⇒ gn(x0) = |y(n)trial(x0)− y

(n)
0 |

(9)

Then, a penalty function is needed to impose the
constraints. In this paper, we use the penalty function
as suggested in [5, 11, 12] which is

PVF =

nIVs+nBVs∑
k=1

µkgk (10)

in which gk is the violation of kth constraint which
is computed from Eq. (10); nIVs and nBVs are num-
ber of the initial conditions and boundary conditions,
µk is penalty multiplier which is chosen to be a large
number.
Finally, the optimization model of ODE with bound-

ary values (BVs) and initial values (IVs) in an uncon-
strained function, will use the fitness function as follows

FFV = WRF+ PFV (11)

The optimum value of FFV is achieved when the value
of this function approaches zero. In this condition,
more accurate solutions can be obtained. The pro-
cedures for solving approximation method are stated
below:

1. Define nat of the trial solution of (1);

2. Construct FFV using in (8), (10) and (11);

3. Initialize the parameters for the optimization al-
gorithm to find the coefficients of the trial solution
(5). Then, the penalty function is used to handle
the constraints;

4. Evaluate the weighted residual function (8) where
the integral can be calculated numerically by using
the Simpson formula. Simultaneously, calculate
the penalty value for violated conditions due to an
inappropriate value of the coefficient at the trial
solution from (10) to obtain fitness function value
(11);

5. Do step 4 until the stopping criteria of the opti-
mization algorithm are reached.

2.4 Differential Evolution Algorithm

DE is one of the global optimization methods that was
first introduced by Storn and Price in 1995 [19]. The

method is initializing population as the first step in
the searching method. Then the DE operators (mu-
tation, crossover, and selection respectively) are iter-
atively evaluated to improve the population to get an
optimum result. DE has various schemes describe as
DE/x/y/z where x is the vector that has chosen to be
mutated, y is the number of different pair vectors that
is used in the mutation operation, and z is the type of
crossover.

The “DE/rand/1/bin” classical mutation strategy in
a G generation of populations has formula:

vi,G+1 = xr1,G + F (xr2,G − xr3,G) (12)

There are three different vectors, where xr1,G is a base
vector, and vectors xr2,G, xr3,G are used for its differ-
ence. All vectors are randomly chosen from the popu-
lations, stated by “rand”. The scale factor F , a scale
factor in mutation, is a constant that is usually taken
between 0 and 1. “bin” stands for binomial crossover,
and “1” stands for a number of pair of different ran-
dom vectors in Eq. (12). Moreover, there are the other
schemes frequently used forms in mutation strategies,
as follows:
DE/best/1/bin:

vi,G+1 = xbest,G + F (xr1,G − xr2,G) (13)
DE⁄current-to-best⁄1⁄bin:
vi,G+1 = xi,G +F (xbest,G − xi,G) +F (xr1,G − xr2,G) (14)
DE⁄current-to-rand⁄1/bin):
vi,G+1 = xi,G + F (xi,G − xr3,G) + F (xr1,G − xr2,G) (15)

DE⁄best⁄2/bin):
vi,G+1 = xbest,G+F (xr1,G−xr2,G)+F (xr3,G−xr4,G) (16)
DE⁄rand⁄2/bin):
vi,G+1 = xr1,G+F (xr2,G−xr3,G)+F (xr4,G−xr5,G) (17)
Each mutation strategy can be effective and appro-

priate for a special case, thus in this paper, we will
use more than one mutation strategy. The mutation
strategies that we used are DE/rand/1, DE/best/1,
DE/current-to-best/1, dan DE/current-to-rand/1. Be-
cause there is a combination in mutation strategy in
DE algorithm, the algorithm we called a combinational
mutation strategy of differential evolution algorithm
(CmDE).
In the crossover operation, a target vector (xi,G) can

be potentially directed by a mutant vector (vi,G+1) so
it becomes a trial vector (ui,G+1). This vector has a
chance to be accepted as the new target with probabil-
ity Crossover Cr whose binomial uniform formula as
follows with the probability of crossover (Cr) is chosen
from the range between 0 and 1.

ui,G+1 =

{
vji,G+1 rand < Cr or jrand = j

xi,G otherwise
(18)

The selection operator will compare the fitness func-
tion value of the trial vector to the value of target vec-
tor. If fitness function value of a trial vector is lower
than a target vector, then a trial vector is added as a
new generation of the population, and vice versa.
In this paper, the iteration computation will be ter-

minated when the maximum iteration is reached or:

|fitness− old fitness| < ϵ (19)
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Algorithm 1 Combinational mutation strategy of differential evolution algorithm

Determining of parameters for DE
Initialization Generate the initial population
Assess the fitness for each individual
while Termination condition is not satisfied do

Mutation
Set F = 0.5 then find new population for each mutation strategy
Crossover
for rand < Cr do crossover process for each mutation strategy
Evaluate the boundary constraints for each new individual
Particular Selection
Find the best solution for each mutation strategy

end while
Global Selection
Find the best global solution for each mutation strategy
Output Global optimum solution

Table 1: Test problems of an ordinary differential equation.

Problem Equation Source Domain Exact Solution
ODE1 y′ + x = 0; y(0) = 1; y(1) = 1/2 [16] [0,1] y(x) = 1− x2/2
ODE2 y′ + 0.5y − e0.8x = 0; y(0) = 2 [19] [0,1] y(x) = 40

13e
0.8x − 14

13e
−0.5x

ODE3 y′ − (1 + 2x)y1/2 = 0; y(0) = 1 [19] [0,1] y(x) = 1
4 (2 + x+ x2)2

ODE4 y′ + 100y − 99e2x = 0; y(0) = 0 [6, 20] [0,1] y(x) = 33
34 (e

2x − e−100x)
ODE5 y′ − 5(y − x)2e5x − 1 = 0; y(0) = 1 [1] [0,1] y(x) = x− e−5x

ODE6 y′ + y3/2 = 0; y(0) = 1 [8, 21] [0,1] y(x) = 1/
√
1 + x

Table 2: Test problems of a system ordinary differential equations.

Problem Equation Source Domain Exact Solution

ODE7
y′1 − 9y1 − 24y2 − 5 cos(x) + 1

3sin(x) = 0; y1(0) =
4
3 [1, 8] [0,1]

y1(x) =
1
3 cosx+ 2e−3x − e−39x

y′2 + 24y1 + 51y2 + 9 cosx− 1
3 sinx = 0; y2(0) =

2
3 y2(x) = − 1

3 cosx− e−3x + 2e−39x

ODE8
y′1 − 32y1 − 66y2 − 2

3x− 2
3 = 0; y1(0) =

1
3 [1, 7] [0,1]

y1(x) =
2
3x+ 2

3e
−x − 1

3e
−100x

y′2 + 66y1 + 133y2 +
1
3x+ 1

3 = 0; y2(0) =
1
3 y2(x) = − 1

3x− 1
3e

−x + 2
3e

−100x

where ϵ is a small number. Stopping criteria (19) have
been used in paper [11, 12] and can be made our op-
timization algorithm stop in the minimum condition
that can be reached. To validate how good the per-
formance of the model, the Root of the Mean Squared
Error (RMSE) and the Maximum Error (MAXE) are
calculated using the numerical solution ytrial and the
exact solution y, respectively:

RMSE =

√√√√ 1

n
||

n∑
i=1

(ytrial)i(t)− yi(t)||2 (20)

MAXE = max ||(ytrial)i(t)− yi(t)|| (21)

where n is the total number of collocation points. Note
that this error is not considered in the process of solv-
ing of ODEs that have no exact solutions so that the
approximation result can be achieved from FFV.

3 Results of the Approximation Solutions

Here, we solve several IV problems that have analytical
solutions using the CmDE algorithm and optimization
model for solving Stiff ODE, in order to validate the ca-
pability and the accuracy of our method. The method

is implemented to approximate various types of ODEs,
like Stiff and non-Stiff. The algorithm uses population
size of 200, and maximum number of iterations in these
computations is 300-10000. In the first calculation, we
implement our optimization method for solving stiff
and non-stiff ODEs with variations of maximum num-
ber of iterations with constant nat value. In the second
calculation, we various of nat from the Fourier-like Se-
ries and Eq. 15 or RMSE as stopping criteria. All com-
putations are running with MATLAB R2018a in HP
Pavilion Laptop Model 14-dv0067TX that is equipped
with processor Intel Core TM i7 with 8 GB ram and
4.70 GHz running Windows 10. Several problems of
ODEs, Stiff and non-Stiff, are given in Table 1.

The results of several problems of ODEs in Table 1
and Table 2 are given in Table 6, Table 4 and Table 8.
In Table 3, we run CmDE algorithm with various maxi-
mum iteration for the same nat for each trial solutions
from single ODE in Table 1. Then, in Table 4 and
Table 5, we run CmDE algorithm again for one Stiff
ordinary differential equation and system of Stiff ordi-
nary differential equation with various nat and Equa-
tion (15) or RMSE as stopping criteria. The graph of
each problem shows in Fig. 1 until Fig. 8.
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Table 3: Result of Problems with variation of nat, variation of RMSE as stopping criteria and maximum
iteration is 60000.

Problem
nat of Trial Iteration of the RMSE as stopping

RMSE MAXE
Solution best solution criteria

ODE1
3 51 1e-04 5.823e-05 1.604e-04
4 296 1e-05 7.993e-06 3.220e-05
5 1340 1e-06 9.473e-07 3.894e-06

ODE2
3 256 1e-04 7.304e-05 1.988e-04
4 890 1e-05 9.085e-06 1.796e-05
5 4138 1e-06 9.004e-07 3.456e-06

ODE3
7 423 1e-04 6.386e-05 2.801e-04
8 904 1e-05 8.188e-06 2.143e-05
9 885 1e-06 6.782e-07 1.397e-06

ODE4
8 14233 1e-04 9.437e-05 2.490e-04
9 2230 1e-05 9.836e-06 2.718e-05
10 2481 1e-06 9.738e-07 2.223e-06

ODE5
6 456 1e-04 6.255e-05 1.559e-04
7 657 1e-05 8.304e-06 2.115e-05
8 785 1e-06 7.917e-07 2.491e-06

ODE6
3 245 1e-04 8.281e-05 1.809e-04
4 902 1e-05 8.230e-06 1.537e-05
5 3590 1e-06 8.706e-07 2.830e-06

Table 4: Result of Problems with variation of nat and maximum iteration is 10000.

Problem
nat of Trial Iteration of the Iteration as

RMSE MAXE
Solution best solution stoppin criteria

ODE1
3 801 >800 1.12e-05 2.30e-05
4 802 >800 3.13e-07 5.93e-07
5 803 >800 1.46e-08 3.35e-08

ODE2
5 801 >800 3.36e-05 1.33e-04
7 801 >800 5.43e-07 1.85e-06
9 2001 >2000 1.91e-08 8.36e-08

ODE3
3 801 >800 1.49e-05 3.16e-05
4 810 >800 2.10e-07 4.91e-07
5 1002 >1000 3.17e-09 1.07e-08

ODE4
4 802 >800 8.25e-05 1.38e-04
6 1005 >1000 1.93e-06 2.55e-06
7 2001 >2000 6.89e-08 1.25e-07

ODE5
3 1006 >1000 2.17e-05 6.69e-05
4 3019 >3000 2.40e-06 9.24e-06
5 5001 >5000 1.50e-07 4.56e-07

ODE6
5 1002 >1000 1.15e-03 7.87e-03
7 2006 >2000 9.24e-04 6.41e-03
10 5006 >5000 6.17e-04 3.51e-03

Table 5: Result of Problems of Stiff System using CmDE with variation of nat and maximum iteration is 10000.

Problem
nat of Trial Iteration of best Time

Equation RMSE MAXE
Solution fitness average (s)

ODE7

3 1001 248.69
Equation1 4.63e-04 7.97e-04
Equation2 4.63e-04 4.33e-04

4 2003 425.16
Equation1 1.36e-05 3.53e-05
Equation2 1.36e-05 1.60e-05

5 3001 675.38
Equation1 1.54e-06 3.30e-06
Equation2 1.54e-06 1.53e-06

ODE8
3 802 180.86

Equation1 3.31e-05 6.42e-05
Equation2 3.31e-05 3.17e-05

4 2001 466.73
Equation1 5.12e-07 9.33e-07
Equation2 5.12e-07 4.60e-07
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Figure 1: Graph of exact and approximate solution with Figure 2: Graph of exact and approximate solution with
nat = 5 and RMSE = 9.473e-07 of ODE1 nat = 5 and RMSE = 9.004e-07 of ODE2

Figure 3: Graph of exact and approximate solution with Figure 4: Graph of exact and approximate solution with
nat = 9 and RMSE = 6.782e-07 of ODE3 nat = 7 and RMSE = 9.738e-07 of ODE4

Figure 5: Graph of exact and approximate solution with Figure 6: Graph of exact and approximate solution with
nat = 8 and RMSE = 7.917e-07 of ODE5 nat = 5 and RMSE = 8.706e-07 of ODE6

Figure 7: Graph of stiff system of exact and approximate Figure 8: Graph of stiff system of exact and approximate
solution with nat = 5 and RMSE1 = RMSE2 = 1.54e-06 solution with nat = 4 and RMSE1 = RMSE2 = 5.12e-07
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4 Discussion

In this research, we obtain numerical solutions for ex-
amples of ordinary differential equation especially stiff
ordinary differential equation like in Table 1. These
ODE problems are changed into an optimization prob-
lem using the concepts that we have explain in section
2. Then, optimization from these problems or the so-
lutions for this optimization problems are found using
CmDE algorithm. The output for this optimization
problem is the coefficients of trial solutions from these
problems. In order to analyse accuracy of our meth-
ods, in comparison with exact solutions, the RMSE and
MAXE is calculated for that ODEs.

In searching the coefficient of trial solution using
CmDE algorithm, the setting of maximum iteration
be one of factor that can affects the accurate value of
the trial solution. From Table 2, we have three differ-
ent maximum iteration for solving optimization prob-
lems with CmDE. We show that if the iteration value
become bigger, such that the value of RMSE become
smaller. The results show that CmDE algorithm can
find approximate solution which can near with the ex-
act solution when the maximum iteration become big-
ger. Furthermore, a trial solution that we propose can
be an approximate solution from ODE that we have
shown in Table 1.

Adding iteration in a nat value like in Table 3 can
achieve condition where the RMSE value stagnant in
certain value. This is caused by the long series (nat)
only able to approximate the exact solution of the or-
dinary differential equation in that nat value. Then, if
we want to get the better accuracy, then the nat value
has to be increased. In Table 3 and 4, we show the
comparison of optimization result for different nat or
different of a series sum. Then, to see the accuracy that
can be achieved from a nat value, we add Eq. (15) as
one of stopping criteria. The result of Table 3 and 4
show that we can increase the accuracy by increasing
the value of nat. We can see it from the RMSE value
for each problem. The graph of each problem shows
in Fig. 1 until Fig. 8. The boundary of independent
variable t or x can be extended to the bigger space.
Trial solution of each ODE in Table 1 can also apply
to larger x limit.

This optimization method can be extended for solv-
ing differential equation that does not have an exact
solution. The accuracy of the solution of differential
equations can be seen from the fitness value. As we
purpose in Table 3, the fitness value linearly propor-
tion to the RMSE value. Therefore, for differential
equation that does not have the exact value, the fit-
ness value can be used as benchmark from accuracy
of the approximate solution. Thus, when the fitness
value become smaller, then the approximate solution
can nearly approximate the solution of that differen-
tial equation.

5 Conclusion

In solving differential equations, we build the approxi-
mate solution in a series as trial solution. This trial so-
lution can be used in stiff ordinary differential equation
and non-stiff ordinary differential equation as a base
approximated function such that solving ODE prob-
lem can be transformed into an optimization problem.
The aim is to minimize the weighted residual function,
which is the error obtained from the implementation
of the series into the differential equations. Boundary
and initial conditions are imposed as constraints that
are implemented as the penalty in the objective func-
tion.

We use Combinational mutation strategy of Differen-
tial Evolution (CmDE) algorithm as a tool to minimize
the residual function. This CmDE algorithm is suc-
cessfully giving the most minimum results for weighted
residual function in the trial solution of each ODE.
Thus, metaheuristic algorithms like CmDE algorithm
can be applied to approximate solutions of many differ-
ential equation problems. This algorithm will give ro-
bust tools in a simple way for approximating the com-
plex linear ordinary differential equations. Therefore,
we motivate to build a general approximate solution
to approximate the nonlinear ODEs that can apply
to Stiff differential equation and non-Stiff differential
equation.
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