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Abstract
In this paper, we present a computational search for best-known merit factors of
longer binary sequences with an odd length. Finding low autocorrelation binary
sequences with optimal or suboptimal merit factors is a very difficult optimization
problem. An improved version of the heuristic algorithm is presented and tackled
to search for aperiodic binary sequences with good autocorrelation properties. A
high-performance computation equipment was used in experiments to search skew-
symmetric binary sequences with high merit factor values. After experimental
work, as results, we present new binary sequences with odd lengths between 201
and 303 that are skew-symmetric and have the merit factor F greater than 8.5.
Moreover, an example of a binary sequence having F > 8 has been found for all
odd lengths between 201 and 303. The longest binary sequence with F > 9 found
to date is of length 255.
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1 Introduction

Binary sequences with low autocorrelation function
properties are important in many areas, such as com-
munication engineering [44, 46, 43, 45] and in statisti-
cal mechanics [34, 3, 32, 42]. Also in mathematics, this
problem (see Littlewood polynomial) has attracted sus-
tained interest [23, 26, 22]. Long binary sequences are
essential for various applications of the coded exposure
process [29, 30].
Finding Low Autocorrelation Binary Sequences

(LABS) with optimal/good merit factors or peak
sidelobe level is a challenging optimization problem.
There are two types of binary sequences: periodic and
aperiodic. In this paper, we are dealing with aperiodic
ones.

A binary sequence S = (s0, s1, . . . , sL−1) has all en-
tries either +1 or −1. Here, L denotes the sequence
length. The aperiodic autocorrelation of S at shift k is
defined as:

Ck(S) =
L−k−1∑
i=0

sisi+k,

for k = −(L− 1), . . . ,−1, 0, 1, . . . , L− 1, (1)

and the Integrated Sidelobe Level (ISL) metric of S is:

ISL(S) =
L−1∑
k=1

|Ck(S)|2. (2)

Note that ISL(S) is defined as the sum of the squares
of all off-peak autocorrelations (i.e., k ̸= 0).

The LABS problem involves assigning values to the
si that minimize ISL(S) or maximize the merit factor
F (S) [20]:

F (S) =
L2

2 · ISL(S)
. (3)

The merit factor F (S), shortly F in the remaining of
the paper, is a measure of the quality of the sequence
in terms of engineering applications [5].

The skew-symmetric sequences have odd length with
L = 2n− 1 and satisfy:

sn+i = (−1)isn−i, i = 1, 2, . . . , n− 1. (4)

which implies that Ck(S) = 0 for all odd k. The re-
striction of the problem to skew-symmetric sequences
reduces the sequence’s effective length from L up to ap-
proximately L/2. It means that the dimension of the
problem and the search space are reduced. The search
space is reduced from 2L to approximately 2(L/2) [34].
Note that the optimal skew-symmetric solutions might
not be optimal for the whole search space.

Besides the merit factor, another metric for the
LABS problem is the Peak Sidelobe Level, PSL(S) =
maxL−1

k=1 |Ck(S)| [28]. Most of the time, a sequence with
the optimal PSL has a merit factor which is much lower
than the optimal merit factor, and vice versa. In this
paper, our key focus is to search for long aperiodic
binary sequences with high merit factors. A reader in-
terested in optimization of the PSL values is referred
to works [15, 8, 12, 16, 9].
One of the main challenges when solving the LABS

problem using the incomplete search is how to im-
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plement a calculation of energy in Eq. (2) efficiently.
Researchers developed efficient implementations of the
energy calculation [19, 24, 6, 33, 14, 15]. They can
be divided into two groups. The first group of the
implementations, presented in [14, 6], utilizes an one-
dimensional array to stores Ck values (see Eq. 1) and
updates them when one bit flip is applied. The second
group of the implementations, used in [19, 7] and also
this work, store precalculated values of sisi+k (addends
in Eq. (1)) in two two-dimensional arrays. Note that a
similar efficient calculation using one-dimensional ar-
ray can be also applied to finding a skew-symmetric
solution of the odd length problem instances [13].
For the time being, aperiodic binary sequences with

currently known best merit factors for lengths from
191 up to 225 are published in [7]. All these sequences
are skew-symmetric with 8.6394 < F < 9.5851. For
lengths longer than 225 up to 301, there are known
sequences for some lengths only and all of them have
F < 8 (see collection [6]). Searching binary sequences,
general or skew-symmetric, with a high merit factor,
higher than 8 for a length longer than 230 is a chal-
lenging optimization problem.
Nowadays, parallel computation can be applied to

tackle hard optimization problems. The power of mul-
tiple computers, which are not necessarily placed in
the same location but can be distributed, is combined
to solve multiple real-world problems. Grid computing
is used in literature to make computations for finding
(binary) sequences [36, 31, 6, 7].

In this paper, we use an improved version of the
xLastovka [7] stochastic algorithm for searching skew-
symmetric binary sequences. In particular, we investi-
gate through extensive experimental runs the influence
of dimensionality of binary sequences for odd lengths
225 < L ≤ 303. At the end of this experimental work,
we are able to find a number of binary sequences that
have merit factors higher than 8. The main contribu-
tions in this paper can be summarized as follows:

• The improved version of the algorithm has found
skew-symmetric binary sequences with the same
or better merit factor than previous algorithms for
lengths between 201 and 225.

• For all lengths between 227 and 303, including,
we have been able to find skew-symmetric binary
sequences with F > 8.

• Examples are now known of binary sequences with
201 ≤ L ≤ 281 and L = 285 having merit factors
greater than 8.5.

• The longest skew-symmetric binary sequence with
F > 9 found to date is of length L = 255.

The rest of our paper is organized as follows. The
background is given in Section 2, where related work
is also presented. In Section 3 an algorithm for solv-
ing a LABS problem in the sense of searching skew-
symmetric binary sequences with high merit factor val-
ues is presented. Section 4 is the main part of the pa-

per, where experimental results are conducted, and a
brief discussion is given. Finally, the paper ends with
a conclusion and future work in Section 5.

2 Background

Theoretical considerations from Golay in 1982 [21] give
an upper bound on F of approximately 12.3248 as L →
∞. However, Golay does not prove that 12.3248 is an
upper bound on the asymptotic merit factor, because
it relies on an unproven heuristic argument.

Owing to the practical importance and widespread
applications of sequences with good autocorrelation
properties, in particular with low peak sidelobe level
values or large merit factor values, a lot of effort has
been devoted to identifying these sequences either by
analytical construction methods or computational ap-
proaches in the literature [40, 46, 41].

The construction method is set by so called ap-
pended rotated Legendre sequences with an asymp-
totic merit factor of 6.342061... [27, 26]. On the other
hand, [1] used the modified Jacobi sequences together
with the steep descent algorithm, and got an approx-
imate asymptotic merit factor of 6.4382. The gap to-
ward Golay’s upper bound, i.e., 12.3248, still remains
huge. Notice, that the study of the merit factor is
fundamentally concerned with an asymptotic behav-
ior, and not the identification of a particular sequence
with a large merit factor. Nevertheless, J. Jedwab in
the survey [25] gave a personal selection of challenges
concerning the Merit Factor problem, arranged in or-
der of increasing significance. The first challenge is as
follows: “Find a binary sequence S of length L > 13
for which F ≥ 10.” Interestingly, in 2005, R. Ferguson
and J. Knauer [18] suspected that in lengths of perhaps
250 for skew-symmetric sequences that merit factors
F > 10 will regularly start to appear. To find a gen-
eral or skew-symmetric binary sequence with F ≥ 10
still remains open.

The search space of the LABS problem is of size
2L. To locate good (optimal) solutions, two approaches
exist: complete and incomplete search. The complete,
or exact search, is able to find the optimal sequence,
but it is unlikely to scale up to large sequences. The
incomplete, or stochastic search, can obtain a result
that may be optimal or close to optimal, i.e., it does
not guarantee optimality.

Currently, the optimal solutions for binary sequences
of even and odd lengths are known for L ≤ 66, calcu-
lated by T. Packebusch and S. Mertens in 2016 [36].
Interestingly, it took 20 years to prove optimality for
six sequences with 61 ≤ L ≤ 66. Optimal solutions
were proved by using the branch-and-bound algorithm.

Following the theoretical minimum energy level anal-
ysis, a new asymptotic merit factor value of 10.23 was
estimated by Ukil [43] in 2015 based on sequences of
length 4 to 60, found by the exhaustive search.

The optimal skew-symmetric solutions are known for
L ≤ 119 [36]. The previous record was N ≤ 89 [37].
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On the other hand, heuristic algorithms were in-
troduced for solving many real-world problems. A
heuristic algorithm can solve small instances easily and
performs reasonably when tackling larger instances by
quickly finding solutions that are close to optimal. The
optimality of the solution is not guaranteed as in, for
example, the exhaustive search.

Different techniques have been utilized to tackle the
LABS problem, such as enumeration [10], evolution
strategy [10], genetic algorithm [38], local search al-
gorithm [17], branch and bound [34, 36], evolutionary
algorithm with a suitable mutation operator [35], tabu
search [24], directed stochastic algorithm [5], evolution-
ary algorithm [11], memetic algorithm combined with
tabu search [19], and self-avoiding walk technique [6, 7].

The memetic agent-based paradigm [48], which com-
bines evolutionary computation and local search tech-
niques using parallel GPU implementation, is one of
the promising meta-heuristics for solving a LABS prob-
lem.

Figure 1 shows the normalized aperiodic autocorrela-

tion function (NAAF) in dB, i.e., 20log10
Ck(S)

L , of two
binary sequences of length 213. One is randomly gen-
erated with F = 1.3572, and another has F = 9.5393,
which is currently the best-known merit factor for se-
quences with a length over 200. The NPSL values,

i.e., 20log10
PSL(S)

L , of the randomly generated sequence
and the sequence with F = 9.5393 are −12.42 dB, and
−25.74 dB, respectively, and the optimized sequence
has the NPSL value, which is more than 13 dB lower
than that of the starting sequence.

As we already said, a sequence with the optimal PSL
usually has a merit factor that is much lower than the
optimal merit factor, and vice versa. For example, the
sequence with F = 9.5393 (Fig. 1) has PSL = 11, while
a sequence with the “good” PSL value of 9 has the
merit factor F = 4.8386, as reported in [8].

Notice, that the lssOrel [7] algorithm belongs to a
group of the deep first search algorithms (after flipping
each si it continues with the best sequence from si
only), and it applies restarts (randomly initialized new
starting sequence) after a predefined number of deep
first search steps.

M. Dimitrov et al. [13], recently proposed an al-
gorithm with a similar technique as used by lssOrel,
with the difference that in [13], the algorithm starts
a new search with the sequence of flipped si immedi-
ately, when si improves the merit factor. This algo-
rithm applies small perturbations of flipping a few bits
to continue the search after all flipped si did not im-
prove the merit factor. It uses an efficient calculation of
merit factors by the storing pre-calculated values of Ck

in a one-dimensional array. This algorithm was able to
perform a computational search on skew-symmetric se-
quences with lengths up to 105 +1 and obtained merit
factors F ≈ 5. For sequences with 200 < L < 300,
there are no reported sequences with merit factors
greater than 7; the sequence with F = 6.5319 is re-
ported for L = 449 [13]. Therefore, finding examples

of aperiodic binary sequences with 200 ≤ L ≤ 300 that
have merit factors greater than 8 or even greater than
9 is very challenging.
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Figure 1: A binary sequence of length L = 213 with F
= 9.5393 and a corresponding starting binary sequence.

3 Algorithm impxLast

In this section, we give an overview of the algorithm
that was used in experimental work in this paper. We
present the algorithm’s features that are necessary for
solving the LABS problem effectively and efficiently.
In the experimental work, we used an improved ver-
sion of the xLastovka [7] algorithm. We will call the
improved version of the algorithm, impxLast. There
are differences in the implementation of both algo-
rithms. The xLastovka algorithm uses two hash ta-
bles, one for storing visited sequences, i.e., we say that
a sequence is visited when its merit factor is calculated
(Eq. (3) in general), and another for storing visited one-
bit flipped neighborhood sequences. The main reason
for using the second hash table lies in avoiding the al-
ready visited sequences and unnecessary calculating of
their merit factors more times, since the LABS problem
with skew-symmetric search space is very likely mak-
ing cycles (i.e. repeating of already visiting sequences)
when searching neighborhood sequences.

In the implementation of our improved algorithm,
we omit the second hash table and, consequently, the
impxLast algorithm requires more calculations of the
merit factor values in comparison to the original algo-
rithm. On the other hand, a new algorithm becomes
slightly faster in the sense if we are focusing on the
speed of both algorithms. The speed is defined as the
number of function evaluations per second. A one-bit
flip operation is counted as one function evaluation.

The mentioned difference between both algorithms
plays a key role in making the new algorithm more suc-
cessful in finding longer binary sequences with larger
merit factor values. A greater amount of frequent ac-
cesses to the hash table can also reduce the perfor-
mance of the algorithm. In our algorithm, we store
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one-bit flipped neighborhood sequences into a priority
queue based on their merit factors, i.e., the sequences
with promising merit factors are inserted into a priority
queue. Since the priority queue has a fixed size, a se-
quence with the worst merit factor is removed from the
priority queue when a new sequence with higher merit
is inserted into the priority queue. The same mecha-
nism of storing one-bit flipped neighborhood sequences
is also applied in the xLastovka algorithm.
A pseudocode of the impxLast algorithm is presented

in Algorithm 1. It can be viewed as the best first search
algorithm. In the main loop in our algorithm, each si
is flipped, and its merit factor is calculated, then this
new sequence is inserted into a priority queue, and, fi-
nally, it is compared to the sequence with the currently
best merit factor. If necessary, the algorithm saves the
new best sequence and its merit factor. After each si is
flipped, the algorithm removes the sequence with the
highest merit factor from the priority queue and con-
tinues the search process using this sequence as a new
starting sequence. At the end of the search process,
the algorithm outputs saved the best skew-symmetric
binary sequence and its merit factor value.
A fast calculation merit factor of a sequence with

one-bit flipped is used in Step 11 in Alg. 1. This mech-
anism was proposed in [19] and it uses two-dimensional
structure for the efficient calculation of a merit factor
when one bit is being changed. The same mechanism
is also applied in [7]. This mechanism is very suit-
able for not very long binary sequences, i.e. L up to
a few thousand, since its space complexity is O(L2).
Note that Dimitrov et al. [13] also proposed an effi-
cient mechanism for one-bit flip of a skew-symmetric
binary sequence, which has space and time complexity
O(L) and it is suitable for searching very long binary
sequences. We refer to [16, 8] for a couple of recent de-
velopments in searching of binary sequences with low
PSL. In Step 6, (L+ 1)/2 flips are performed for each
bit of a skew-symmetric binary sequence. The outer
while loop that starts in Step 5 is executed while stop-
ping criteria are not met. In the experimental work,
we used a time of four days as the stopping condition
in the impxLast algorithm.

4 Results and Discussion

In this section, we present our main results with dis-
cussion. The result for 201 ≤ L ≤ 303 obtained by the
impxLast algorithm are presented in Table 1, and the
merit factors of the obtained binary sequences are plot-
ted in Figure 2. In Table 1, the sequences obtained by
the xLastovka [7] algorithm are marked with †, and the
impxLast algorithm was able to find a sequence with
the same merit factor value, too.
Figure 2 shows that all currently best-known merit

factor values for skew-symmetric binary sequences with
the odd length between 201 and 303 are greater than 8.
With a construction method based on rotated Legen-
dre sequences, one can construct a sequence with any
arbitrary length (usually these lengths are required to

Require: L ... length of sequence

Ensure: Sbest ... best sequence found during optimization
search

Ensure: Fbest ... merit factor value of Sbest

1: S ← initialize a starting skew-symmetric sequence of
length L

2: F ← calculate merit factor using Eq. (3)
3: Insert S into hash table HT
4: Sbest ← S; Fbest ← F
5: while stopping criteria are not met do

** search neighborhood **
6: for each i ∈ (L+ 1)/2 do
7: Sf ← flip si in S
8: if Sf ∈ HT then
9: continue ** skip if sequence Sf was already

visited **
10: end if
11: Ff ← fast calculate merit factor of Sf (skew-

symmetric)
12: Insert Sf into a priority queue ordered by merit

factor
13: if Fn > Fbest then

** save the best sequence and its merit factor
**

14: Sbest ← Sf ; Fbest ← Ff

15: end if
16: end for

** best first search **
17: S ← remove an item from the front of the queue
18: end while

Algorithm 1: Best first search algorithm (impxLast)
with a priority queue.

be prime numbers) that has a merit factor of approx-
imately 6.34 [4, 1]. We can notice gab of 2 between
currently best-known merit factors obtained by the im-
pxLast algorithm and merit factors generated by the
construction method on Figure 2.

The best-known merit factor values in Figure 2 are
decreasing for longer sequences. A trend that the merit
factor F decreases as length L increases can be in-
terpreted in a way that a sequence with a high merit
factor is harder to be found by a heuristic algorithm
as its length increases. Note that our algorithm used
the same amount of execution time for each sequence
length. We used the SLING infrastructure [39] to per-
form one hundred runs for each LABS instance, and
for some instances with lengths around 290, more ex-
ecutions were required to reach F > 8. Each run was
limited to 4 days.

Figure 2 also illustrates how the best-known merit
factor values have been changing over the last 35 years.
The best-known merit factor was approximately 6 in
1985 [2, 3] for skew-symmetric sequences up to L =
199. Knauer’s results are dated back to 2004, which is
roughly speaking 2 decades after Beenker’s results, and
our results are approximately 2 decades after Knauer’s
results. This indicates how hard is the computational
search of the LABS sequences with high merit factors.
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Table 1: Merit factors and skew-symmetric binary sequences of length 201 up to 303 obtained by the impxLast
algorithm. Sign † indicates the sequence and its merit factor that was also obtained in [7].

L F Sequence PSL

201 9.0993† 00FC7C04C5DF914630C9E3AF60A741258CB26FB95DECEAD6D4A 15

203 8.8927† 0E3C71E0783B8073005132B88CDDBF310553255BB5A56924B6D 13

205 8.7918 06333981E3DC3FDAA0FAF0E0106BAA4B414A01D52DD25A993326 15

207 9.1129† 0492402193C9DA4ED4207EED42740EEA5740EC789CB1975471C5 19

209 9.2544 071C7077C4519F3303F82A181F5F5A9A02952B3359BEED76B6DB6 15

211 9.0600† 0E38E0EF88A33E6607F054303EBEB534052A5666B37DDAED6DB6D 15

213 9.5393† 0545F75480D9EAD2791B136CB1E25B0C73B1B963C059CA8FF75EFE 11

215 8.9066 03E1B0FB2086FA3FE0628366088DDD6635F656AB7AE5D73AD396B5 13

217 8.9319 04A40097BF6B77C98C7BD94E876DC7684F9D16C98D77075178AAE0E 19

219 8.9580 03E0F983E0CDF0067745479A682475E79A4042265528CD6B59AD6B5 15

221 8.9584 00037B10994896495AC2928C7E79D9656C8382C1F8E788F98BB172AA 17

223 9.0383† 03E3E1F477C04FF98F31B71E403113546923932D9AAC54A24296B6B5 13

225 9.0144† 007030301EFF79C03DC6E7347AC71B6C16F3646DD2AD97545AB2B2B6A 15

227 8.8935 1CEE773970A8710C03C05C7AE04616456FA4854B54D125FD21B226EC9 15

229 8.8523 048B2681508906F64BA3F05CF4E0C8CA4F4DEB5210E746B88BFA86308E 13

231 8.7678 043FFF7E313D68635219C13C86706E5265CB149970365E0B136A2AAB45 15

233 8.9409 038E3387551EA3F15BC0D5911D4867668FDBB9FCAD1FB5205BFF6932492 15

235 8.9044 0DBB2327E024F9E6AE8AB42CF3C85405CB2CF43FDEFE69AC756A7373B8D 15

237 8.8039 03E24D9306D80F80E5C4082B0115D8C9DFBAB028AEDE4A94A9C6B39CE252 15

239 8.6678 1CD29A646F01F337DAEB55425A4204C5747874003EF8A332952E4679F0C9 13

241 8.6430 054AA555344A868922C49C36652531B1B3E3E672D8EC2388680EF3FFE00FE 15

243 8.6608 0383FE107E1E00F38E260034CCEFB8BDBAECCC355676DB2D5696A516AB5B5 17

245 8.7807 00502FC5B97D6B64C8863D348038918C9B892A8F3D2688CE707D791ED42BEA 13

247 8.6784 11810DC8CA02F4E19042E9658F71DE2F68922D861EF45196C2F57CDC8D1591 15

249 8.8573 000FF810253878C6360C380BD9EFDBB1B11D459D0A92CA726C9693E2BA954AA 17

251 8.7966 03B8E01DC783BE30F1B898A23FC4560356044AB77D9DB92D36BB5A48956DBB5 17

253 8.7206 0780041F0DE2791BFC10E4F2616C8C4828EC8C7A634E4BAD51B9625CB5AEAA96 13

255 9.0338 00FE00B692427B7F924094B3398FB9EE6E9BAD9B33C1D471AA3A7471E3D56AD5 19

257 8.9936 01B2CBE1F07DB2728B67E44A8C0730005EAAB36AC80EE567083631D6B5A50C31A 19

259 8.8056 1C3C6317188205030EBF1D99E819EE54BC06E995E99892BED350575D921364B49 17

261 8.7740 03F9F0E0184FB6387379B5C1522544E757F64EFE23FADF1973692714E9AA4B5952 15

263 8.5882 0C71C638FC545E3B2D6F22B4AA667F91FA91AA667FC3F72E0F3B68404ADB64924D 15

265 8.5473 0000489366D6AC48B59B2D207972A7E5432FE5603796A3C319F08EC07C67388EAAA 19

267 8.6077 1CE3FF1EE6303981FF8EFDAD4D7A68754CC025E7A0C0F8AEDAA959B5366E92AB6C9 15

269 8.5533 00044082B5CD9B863C953DA87B413F38D48FC9353AF1681D3F8D26919CDF028AEEAA 15

271 8.5496 03E68F8220F8E3C441F95788998DA34F71922C378D99DDA01A9444B6DAD775ADE6B5 13

273 8.8221 00F0B85C0C72596C846774F322D11A054022AFEA1BBC2334F766E8C79E36CADE90B4A 15

275 8.5607 010183C7020637F8E56E0CC10AF4279B64CC639A742FD14CD6E06DAA3657524B59515 17

277 8.6058 01F06C2C91741C9B351770FEC09E48014D889CFAA8E58AC54B77BF318DAF7B8C2C6B5A 15

279 8.5898 01DFE083C100C62740C4BA7F371E6249A1EE979C7669232A7BC4D42764D514B5D6A895 17

281 8.5763 0756A543AB7350A4E93891673AA8A3ACB69CD870C120801367B89384E0BF37012FE07F6 17

283 8.2925 000031BF9CC3A578A735BB90ED29E49F8E4EC6DA9C69F0ED1BB8327DA07B4C9AB935555 17

285 8.5789 00C91658B0F1264C581A103A2FE15F6CAFCC6CD40C75FA54212BA1A9ECE63B4B09E7B8CA 15

287 8.3184 1E6B3C946F28C7790A9C847B7B2B02A302AFAFF537F53F3A3A45C9FD1A24DF2E41CB3E69 17

289 8.1436 01907C03C37F71DF96C241D101BE8C97048EE448EB78C851ABBDAE2C795DB7572D2AD6B9A 15

291 8.1912 00FBF8380E3F809C03137D67359013846696CE1E645B15183260A313549D5AB6D5B5ABAD5 19

293 8.0898 007843C21087843C09FFC1373B28EB311D6668667DBB304831373AD558AD2E968BA2D2E96A 17

295 8.0534 0780067FF006078033803C307E73B739CD9685E18C9B23B26A534B55B355A56552AA6555A5 17

297 8.0190 07145E287D1AAAA8FA14F48F29B836694ECCC32CCC4F8672918348F4FA1480001BD6825EFB6 17

299 8.1496 01FFEF631BD2188039CCC87C22C3FACF4E9A6BE79EC2CFAB4F74A5CCC9B55D970B9362EAA95 15

301 8.3304 01F27C3817FF00910EDFB6F8C386C64E77537DDD73F764E6C692C94715C4BB8AB557A92D635A 17

303 8.0718 14A29CEB1AEA5CA5A43D99B1250A3155FEF3433432EA80137D0713998B4787C87EF93EC9F7C1 21
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Figure 2: Merit factor values for skew-symmetric binary sequences with odd length from 201 up to 303. Beenker
& Bernasconi’s result is for length 199.

Table 1 presents skew-symmetric sequences of
lengths 201 up to 303. For each length L, a sequence
is presented using a hexadecimal notation. We decode
each hexadecimal digit in binary form (0 7→ 0000, 1
7→ 0001, 2 7→ 0010, . . . , F 7→ 1111), and, if necessary,
remove initial 0 symbols to obtain a binary string of
the appropriate length. Then we convert each 0 to
+1 and each 1 to −1 to obtain the binary sequence.
Table 1 contains binary sequences with merit factor
F > 8 and some of them have F > 9. In this table,
we show also the results up to L = 225 that are
taken from our previous work [7], except for seven
sequences with odd lengths of 205, 209, 215–221,
where the merit factors have been improved by the
impxLast algorithm. For all other sequences longer or
equal than 227 we report the merit factor values that
are obtained by the impxLast and these results are
currently the best known.

The largest sequence with a merit factor higher than
9 found to date has a length of 255. Interestingly, it
could be pointed out that all sequences with L <=
285, except for L = 283, have the merit factor higher
than 8.5. One can notice that currently known best
merit factors decrease as lengths of sequences become
larger, and this decreasing trend can be seen by results

obtained by our algorithm, but also by results of the
lssOrel algorithm, as well as by Knauer’s results. The
reason for this lies in the fact that the search space is
increasing exponentially.

The authors believe that binary sequences with even
higher merit factors exist, but one needs even more
computational power to find them. Another possibil-
ity for searching new sequences with the higher merit
factors is to invent new algorithms.
In Table 1, a PSL value for each skew-symmetric binary
sequence is shown in the last column. These PSL val-
ues are worse compared to the best-known PSL values
(see [16, 7]) for sequences with lengths 201 ≤ L ≤ 303.
This means that a binary sequence with a high merit
factor has a PSL value that is higher (i.e. worse) than
the best-known PSL value, and vice versa. Conse-
quently, a designer of a new algorithm should take care
of this fact.

5 Conclusion

In this paper, we used a stochastic algorithm and
a high-performance computation to search for aperi-
odic binary sequences with low autocorrelation prop-
erties. We reported skew-symmetric binary sequences
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of length from 201 up to 303 that have the merit fac-
tor F greater than 8, and many of them have F > 8.5
and also F > 9. The longest sequence with F > 9
found to date has length L = 255. In the future,
our research will focus on searching new longer se-
quences with higher merit factors using parallel com-
putation on graphical processing units (GPUs). An
implementation of a search algorithm using quantum
operations [47] is also a possible direction of further
research.
Acknowledgement: The authors acknowledge the fi-
nancial support from the Slovenian Research Agency
(research core funding No. P2-0041 – Computer Sys-
tems, Methodologies, and Intelligent Services).

References

[1] Baden, J. Efficient optimization of the merit fac-
tor of long binary sequences. IEEE Transactions
on Information Theory 57, 12 (Dec 2011), 8084–
8094.

[2] Beenker, G., Claasen, T., and Hermens, P.
Binary sequences with a maximally flat amplitude
spectrum. Philips J. Res. 40 (1985), 289–304.

[3] Bernasconi, J. Low autocorrelation binary se-
quences: statistical mechanics and configuration
space analysis. J. Physsique 48 (April 1987), 559–
567.

[4] Borwein, P., Choi, K.-K., and Jedwab, J.
Binary sequences with merit factor greater than
6.34. IEEE Transactions on Information Theory
50, 12 (Dec 2004), 3234–3249.

[5] Borwein, P., Ferguson, R., and Knauer, J.
The merit factor problem. London Mathematical
Society Lecture Note Series 352 (2008), 52.
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