
PHASE TRANSITION AS AN EMERGENT PHENOMENON ANALYSED BY
VIOLATION OF STRUCTURAL INVARIANT (M, BM)

Jiri Bila�, Ali H. Reshak, Jan Chysky
Department of Instrumentation and Control Engineering, Czech Technical University in Prague, Czech Republic

jiri.bila@fs.cvut.cz�, AliH.Reshak.AL-JAARY@fs.cvut.cz, Jan.Chysky@fs.cvut.cz

Abstract
When modeling complex systems, we usually encounter the following difficulties:
partiality, large amounts of data and uncertainty of conclusions. The most common
approach used for modeling is the physical approach, sometimes reinforced by
statistical procedures. If we assume emergences in the complex system, a physical
approach is not appropriate at all. Instead, we build here the approach of structural
invariants. In this paper, we show that another plane can be built above the plane
of physical description, which is responsible for violation of structural invariants.
Main attention is concentrated (in this article) on the invariant matroid and bases
of matroid (M, BM) in combination with Ramsey graph theory. In addition, the
article introduces a calculus that describes the emergent phenomena using two
quantities - the power of the emergent phenomenon and the complexity of the
structure of the considered complex system. We show the application of the
method for modeling phase transition in chemistry.
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1 Introduction

The field of complex systems is proving to be a
very needed field of research nowadays. When two
years ago they were written on the topic of complex
systems and emerging behavior, especially conference
articles, today the papers with mentioned topics
are published in very serious journals and there are
referenced more than 100 papers on WoS only for the
year 2020 till now. In this article, we focus attention
mainly on modeling complex systems and processing
emergent situations in the field associated with crystal
chemistry. Emergent situations are associated in our
paper with violation of so called structural invariants.

Nice examples of it we find in particle physics
and we remind here works of Laughlin (reminding
Goldstone’s theorem in this context) [13] and also of
Drapper [8] citing: “The supersymmetry break can
not be done permanently by the particles of MSSM
(Minimal Supersymmetric Standard Model) as they
currently appear. This means that there is a new
sector of the theory that is responsible for the
breaking.”

We present this in our article, where we build
another plane above the plane of physical and crystal-
lographic description, which describes the violation of
the structural invariant (M, BM).

2 Related Work

In this Section we introduce only a few sources to un-
derstand our approach to the problem. Theory and
applications of complex systems are, e.g., in [19, 6, 12].
For comparison of various interpretation of concepts
of emergence and emergent behavior we introduce
[10, 11, 2, 4]. The references [7, 9, 16, 17] are in-
troduced as a line to the fields of computational and
crystalographic chemistry. Our method of analysis and
the detection of emergent situations has been published
many times, e.g., in [5, 1, 3, 4]. Theoretical background
for this method is in [14, 15, 18, 20].

3 The Analysis and the Detection of
EMSs by Structural Invariant (M, BM)

3.1 Matroids and Ramsey Theory of Graphs

A matroid is usually introduced [14] as the following
structure:

M = 〈X, IND, {N1, N2, . . . , Nn}〉 = 〈X,MB〉, (1)

where X is the ground set of elements (compartment),
IND is a relation of independence, N1, N2, . . . , Nn are
independent sets, and MB is a set of matroid bases.

An extension of a matroid basis by at least one
element is considered (in this paper) as a violation
of structural invariant (M, BM) and it is consid-
ered as an internal indicator of the appearance of an
emergent situation.
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Extension of matroid basis

The extension of a basis of the matroid can be done by
two ways:

m1) From the cardinality of the matroid, we calcu-
late the minimum number of elements that must
be added to the matroid to have an extending el-
ement among them. The number “min ∆f(RN)”
is a minimal difference between the next Ramsey
number and the current Ramsey number.

m2) We find an extending element, verify the pos-
sibility of the extension of some basis (IND) and
if it is necessary we make normalization (explana-
tion in sub section 3.2).

Association with Ramsey Theory of Graphs
[15]:

Speaking about graph matroids we consider many pos-
sible graphic architecture of them - e.g. in [14]. Rela-
tions DNT and IND are considered as binary relations
and they are represented by edges with connected and
disconnected nodes in graphs. In the following text we
work with matroids that are formed on perfect graphs
and the following consequences can be used:

The bases (MB) will be constructed as perfect sub-
graphs in a perfect graph on X. (A perfect graph on
X has each node connected with all other nodes of X.)

The independent and dependent elements in a per-
fect graph Gp = (V,E) are easily constructed by col-
oring the edges of the perfect graph by two colors, and
the formalism of Ramsey numbers – R(#B,#Y ),B ∈
MB is offered for use. We now introduce a free for-
mulation of the relations on a perfect graph Gp colored
by two colors as a consequence of the famous Ramsey
theorem:

Theorem. A perfect graph Gp = (V,E) with n nodes,
where each edge belongs to class A or to class B, con-
tains a perfect subgraph with a nodes and edges from
class A or a perfect subgraph with b nodes and edges
from class B.

In most cases holds (#B + #Y ) 6= n, for
R(#B,#Y ),B ∈ MB. The reason is that re-
maining nodes (n−#B−#Y ) belong to class A or to
class B however they do not form perfect subgraphs.
Number R(a, b) = n that corresponds to numbers a
and b and is equal to number of nodes of the perfect
graph Gp is called a Ramsey number.

3.2 The Power and Complexity of an Emergent
Phenomenon

The emergent phenomenon we describe – in our view
- by two variables – the power HP of emergent phe-
nomenon and the complexity HCOM of emergent phe-
nomenon. Essential relations between the power HP

and the complexity HCOM are expressed by two equa-
tions

HP (B + 1) = HP (B) + (u/c)HCOM (B), (2)

HCOM (B + 1) = HCOM (B) + uHP (B), (3)

where B ∈ MB is a basis of a matroid and B + 1
is the basis B extended by one element. Variables
HP (B),HP (B + 1) and HCOM (B), HCOM (B + 1)
are power and complexity of emergent phenomenon re-
lated to bases B and B + 1. Symbol u denotes the
quotient of self organization of the considered complex
system (represented by the compartment) and c is the
limit of this quotient (the best self organization). Quo-
tient (u/c) ∈ 〈0, 1〉 represents “intelligence” of self or-
ganizing process that will execute the emergent phe-
nomenon. Operating with equation (2) we obtain con-
tribution to power released by emergent phenomenon

∆HP (B + 1) = (u/c)HCOM (B), (4)

where ∆HP (B + 1) represents the changes in the sys-
tem due to EMS by quantities of symptoms and
HCOM (B) represents the complexity of the system by
structure of drivers that provide ∆HP (B + 1).

The link between ∆HP (B + 1) and HCOM (B) is
provided by (u/c) - the “intelligence” quotient of the
system. The quantity of (u/c) is done by rough esti-
mation [4, 6] and by soft tuning according to Appendix
A.

The contribution to power of the emergent phe-
nomenon ∆HP (B + 1) that has an intuitive meaning
in the internal level is associated in the external level
of the description with the power ∆HD(B + 1)
(e.g., damage of houses by floods) measured by quan-
tities of external variables (symptoms) si, i = 1, . . . , n
for emergent (siem) and for nominal (sinom) situations:

∆HD(B + 1) = (
n∑

i=1

(ωi(siem/sinom)2))1/2, (5)

∆HP (B + 1) = Λ ·∆HD(B + 1), (6)

where ωi are quotients of importance and Λ is a cali-
bration constant. Quotients of importance ωi are com-
puted by Saaty method [18].

The contribution to power of emergent phenomenon
∆HD(B + 1) results in a dimensionless real number
expressed here in % (for example, contribution for
20 % is calculated as (120/100) = 1.2). Equation (3)
is associated with equation (4) where HCOM (·) is ap-
proximated in our case by number of elements of ba-
sis B, i.e. #B. Function ξ transforms real number
(∆HP (B + 1)/(u/c)) into nearest larger integer and
holds:

ξ(∆HP (B + 1)/(u/c)) = #B (7)

(For explanation: We describe a contribution
∆HD(B + 1 of power of a possible EMS by ap-
proximating the emergent and nominal values of the
selected variables in the compartment of real world.
Using calibration constant Λ we find ∆HP (B + 1.
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Then we form a corresponding representation in the
pre-geometry (matroid and matroid bases) and we
compute by (7) the cardinality #B. The violation of
this invariant we solve as an extension of a matroid
basis. Then if necessary are computed conditions for
the proposed EMS in the original compartment of real
world – called here “normalization”.)

We formulate now a basic rule for analyzing (detect-
ing) an emergent situation as follows:

For case m1):

IF(#E1 ≥ min ∆f(RN))⇒ (PAES), (8)

where E1 is a set that extends the matroid 〈X1,MB1〉
and contains at least one element e1 extending basis
B1. The number “min ∆f(RN)” is the minimal dif-
ference between the next Ramsey number and the cur-
rent Ramsey number, and PAES denotes the “Possible
Appearance of an Emergent Situation”. The number
∆f(RN) provides that at least one element could be
connected with relation IND with all elements of some
basis from MB1. (This is the case for #B not for #Y
– in the formalism of Ramsey numbers R(#B,#Y )).

For case m2):

IF(∃e, (IND(e, xi),∀xi ∈ B1))⇒ (PAES), (9)

where e is an extending element, for which was verified
Independence (IND) to all elements of B1.

3.3 Normalization of ∆f(RN) with Regard to a
Real “Volume” of Added Elements

The following operation is actual for cases where the
detecting of PAES in pre-geometry can be represented
by the addition of real elements to the real compart-
ment (e.g., drivers in an ecosystem) or the addition
of some time interval to given time moment [6] in the
considered compartment. (We are speaking about an
additive representation of drivers.)

The number V (B) is different from RN(B) – in gen-
eral. Then is necessary to execute a normalization of
∆f(RN) to actual number of active elements V (B)
in the actual state of complex system. The informa-
tion about number V (B) is a complementary informa-
tion and it does not influence the calculation according
equations (4), (5), (7). The normalization procedure
for the alternative “m1” (expression (8)) has the fol-
lowing steps:

• Let us assume that we have computed
∆HP (B + 1) (equations (5) and (6)).

• From this number is possible to acquire #B by
equation (7).

• Considering #B as a number of elements of a basis
we compute RN(B).

• This number corresponds to an actual state of the
complex system and thus to a “volume” of ele-
ments in this state.

• RN(B) corresponds to V (B).

• From this correspondence we extract a normaliza-
tion quotient λ

λ = V (B)/RN(B). (10)

• After computation RN(B + 1) we extrapolate
the quantity V (B + 1)

V (B + 1) = λRN(B + 1). (11)

• Then the value ∆f(RN) corresponds to value
∆V (B,B + 1) (the number of elements that is
necessary to add to V (B))

∆V (B,B + 1) = λ∆f(RN) (12)

And the addition of ∆V (B,B + 1) to the number of
active elements of the actual state is associated with
PAES.

4 Phase Transition as an EMS Analyzed
by Violation of (M, BM)

In this subsection we work with experimental and com-
puted data acquired from [16]. The influence of phase
transition on the electronic structure and the optical
properties of BaThO3 was investigated by means of
Density Functional Theory [16, 9]. At room temper-
ature BaThO3 is stable in the Pbnm phase till the
547°C, whereas it is stable in the Ibmm phase at higher
temperature. The transfer from Pbnm phase to Ibmm
phase by the influence of temperature we consider as
an emergent situation. In Table 1 there are introduced
the quantities for Pbnm phase and Ibmm phase com-
puted by program wien2k [7]:

Table 1: Values of components for phases Pbnm and
Ibmm.

Component (Qx) QPbnm QIbmm

εxx1 (0) 3.234 3.273
εyy1 (0) 3.137 3.173
εzz1 (0) 3.116 3.079
δε -0.033 -0.046
ωxx
p 8.530 8.966

ωyy
p 8.095 8.068

ωzz
p 8.449 7.768

nxx(0) 1.798 1.809
nyy(0) 1.771 1.781
nzz(0) 1.765 1.754
∆n(0) -0.030 -0.041
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The content of variables:

• QPbnm . . . quantities of components for Pbnm
phase,

• QIbmm . . . quantities of components for Ibmm
phase,

• εxx1 (0), εyy1 (0), εzz1 (0) are real parts of tensor com-
ponents of dielectric function in frequency 0,

• ωxx
p , ωyy

p , ωzz
p are real parts of tensor components

of plasmon oscillations,

• δε is uniaxial anisotropy,

• nxx(0), nyy(0), nzz(0) are tensor components of re-
fractive index in frequency 0,

• ∆n(0) represents birefringence.

As a power of emergent phenomenon is considered
cumulative result of changes of the optical properties
for Pbnm and Ibmm phases.

For computation ∆HD(B + 1) we use dimension-
less expression ( QIbmm QPbnm) for all quantities from
Table 1, quotients ωi of importance (equation (5)) are
equal to 1, for calibration constant Λ = 1 (equation
(6)) so that ∆HP (B + 1) = ∆HD(B + 1).

∆HD(B + 1) =
(
(3.273/3.234)2+

+ (3.173/3.137)2 + (3.079/3.116)2+

+ (−0.046/− 0.033)2 + (8.966/8.530)2+

+ (8.068/8.095)2 + (7.768/8.449)2+

+ (1.809/1.798)2 + (1.781/1.77.)2+

+ (1.754/1.765)2
)1/2

= 3.33 (13)

#B = ξ(∆HP (B + 1)/(u/c)) = 9

for (u/c) = 0.37 (after tuning operation according Ap-
pendix A.)

∆f(RN) = RN(x, 10)−RN(y, 9) :

RN(y, 9) : (115, 141, 153)

RN(x, 10) : (149, 442, 1171)

∆f(RN) = min{(149-115), (442-141), (1171-153)}
= 34

λ = 547/115 = 4.76 (14)

∆T = λ∆f(RN) = 161.84°C (15)

The quantity of temperature that is needed for the con-
sidered phase transfer is:

547°C + 161.84°C = 708.84°C

And it corresponds to results of experimental verifica-
tion the phase transition and its consequences [16].

This introduced result should not converge on the
idea that there is presented a new method of the syn-
thesis of new chemical compounds. The result that
we published in [16] was useful to support our method
of representing the emergence by the expansion of the
matroid base and to demonstrate emergence by the
violation of another structural invariant in the lower
plane - symmetry. (This is nice to see on the crys-
tallographic groups Pbnm and Ibmm as well as on
the structural grids.) The method of representation
of emergence used does not go towards describing the
product that emerges. It is too vague for that (PAES).
Its aim is to discover the conditions under which emer-
gences can be expected. In the article, we described
only additive conditions. (PAES is conditioned by the
addition, (may be connection) of a certain quantity of
active scalar variable to the current state.) There are,
of course, non-additive PAES conditions that are con-
siderably more interesting.

5 Conclusion

The paper presents one application of our method for
the processing emergent situations in complex system.
While the previous published examples were oriented
to emergent phenomena on macrostructure of systems
(floods, traffic jams [2], onset of diseases [3]) the pro-
posed paper describes emergent situation in the devel-
opment of microstructure in crystalographic chemistry.
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Appendix A.

The method of soft tuning of (u/c) is as follows: Con-
sidering the complexity of the compartment of the com-
plex system given by the number of a matroid basis –
HCOM (B) = #B - the procedure for calculating and
determining the coefficient (u/c) is based on the fol-
lowing limitations and conditions:

(a) (u/c) ∈ 〈0, 1〉.

(b) ∆HP (B + 1) ≥ 0.1.

(c) #B ∈ Z+.

Procedure for computation of (u/c):

S1 First is computed ∆HP (B + 1) (resp.
∆HD(B + 1)).

S2 Fulfilling condition (u/c) ∈ 〈0, 1〉 (starting with an
initial quantity of (u/c)) is calculated the quantity
#B.

S3 In the list of Ramsey numbers [15] we find numbers
R(3,#B), R(4,#B), . . . , R(r1,#B).

S4 We find the nearest numbers R(3,#B + 1),
R(4,#B + 1), . . . , R(r2,#B + 1).

S5 We compute combinations of Ramsey numbers for
the selection of a minimal difference

∆f(RN) = RN(x,#B + 1)–RN(y,#B).

So we find numbers RN(y,#B):
(p1, p2, p3, p4, p5, . . . ), and RN(x,#B + 1):
(q1, q2, q3, q4, q5, . . . ), and we express the se-
quence ((q1 − p1), (q1 − p2), (q2 − p2), (q2 −
p3), (q3− p3), . . . )

S6 From this sequence is computed

∆1f(RN) = min{(q1−p1), (q1−p2), (q2−p2), . . . }

S7 We turn back to step S2 and we select another
(u/c) (fulfilling condition (a)).

S8 We continue till the step S6 and compute

∆2f(RN) = min{. . . }

S9 This procedure from S7 to S8 is repeated as many
times as possible until the variability of the se-
quence (∆1f(RN), . . . ,∆kf(RN)) is seen.
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S10 The best value of the quotient (u/c) is a number
for which we found

min{∆1f(RN), . . . ,∆kf(RN)}

S11 For this value of (u/c) we solve equation (7) (from
subsection 3.2) and we continue in the method.

Note: In calculation in Section 4 of the paper the initial
quantity of (u/c) for S2 has been 0.35.
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